• Title/Summary/Keyword: Optical Height

Search Result 347, Processing Time 0.021 seconds

Fringe-Order Determination Method in White-Light Phase-Shifting Interferometry for the Compensation of the Phase Delay and the Suppression of Excessive Phase Unwrapping

  • Kim, SeongRyong;Kim, JungHwan;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.415-422
    • /
    • 2013
  • White-light phase-shifting interferometry (WLPSI) is widely recognized as a standard method to measure shapes with high resolution over a long distance. In practical applications, WLPSI, however, is associated with some degree of ambiguity of its phase, which occurs due to a phase delay, which is the offset between the phase of the fringes and the fringe envelope peak position. In this paper, a new algorithm is proposed for the determination of a fringe order suitable for samples in which the phase delay mainly occurs due to noise, diffraction and a steep angle. The concepts of the decouple factor and the connectivity are introduced and a method for calculating the decouple factor and the connectivity is developed. With the phase-unwrapping procedure which considers these values, it is demonstrated that our algorithm determines the correct fringe order. To verify the performance of the algorithm, a simulation was performed with the virtual step height under noise. Some specimens such as step height standard and a column spacer with a steep angle are also measured with a Mirau interference microscope, after which the algorithm is shown to be effective and robust.

NON-CONTACT SENSORS FOR DETECTING DISTANCE FROM THE FIELD SURFACE

  • Lee, Jeyong-;Minoru-Yamazaki;Akira-oida;Hiroshi-Nakashima;Hiroshi-Shimizu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.373-382
    • /
    • 1993
  • A non-contact sensor for detecting distance from field surface to a predetermined location of a tractor will be useful to control precise height of implements such as tillage machinery, mowers etc.. An optical and an ultrasonic sensors were designed and fabricated . The indoor and outdoor experiments were conducted to obtain the static and dynamic characteristics of the two sensors at several moisture levels of four soils and on the soil surface with a designed shape. The results revealed that the optical sensor is unsuitable for soils with high moisture content but showed better detecting accuracy on the irregularity of soil surface.

  • PDF

Analysis of Optical Flying Head Dynamics for Near-field Receding System (근거리장 광부상 헤드의 Loading 동특성 해석)

  • 은길수;김노유
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.175-180
    • /
    • 2002
  • Loading/Unloading(L/UL) mechanism has been considered to be an alternative to contact start-stop(CSS) mechanism which eliminates stiction and wear associated with frequent start and stop process. It has other advantages including increased areal density due to lower flying height, reduced power consumption, and improved shock resistance. In order for L/UL to be Implemented in Near-field recording system properly, dynamics of optical flying head must be understood and optimized. In this paper the dynamic characteristics during loading process is analyzed numerically to investigate the effect of design parameters such as loading speed. slider shape, and initia conditions on the dynamic reponses of flying head..

  • PDF

Surface profiling by the phase shifting method in fiber-optical confocal scanning interference microscopes (광섬유 공초점 간섭 현미경과 위상 변위법을 결합한 표면 검색)

  • 김대찬;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.201-207
    • /
    • 1999
  • The fiber-optical confocal scanning interference microscope with a simple configuration was constructed with a 4-port fiber-optic coupler, and the new method based on the phase shifting method was proposed for surface profiling by the system. In the method, the height of a specimen was determined from the phase of confocal beam. It was verified experimentally that the method was applicable to even the confocal interference microscope with a long-wavelength source and a low NA objective, and that the scanning time could be drastically reduced compared with the conventional method. Finally, it was found that our method is less sensitive to the variation of surface reflectivity than the conventional method.

  • PDF

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

A Study of Reflector Design Method for Low Road Illumination (낮은 도로 조명을 위한 Reflector 설계 방법 연구)

  • Lee, Jeong-Su;Park, Hye-Jin;Seo, Jin-Hee;Jeong, You-Jin;Kim, Seo-Young;Ra, Hyun-Woon;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.273-280
    • /
    • 2017
  • In this paper, a freeform reflector is designed for low road lighting. In the case of low road lighting, which requires light distribution over a wide lane compared to the height, it is difficult to match uniformity, compared to existing road lighting. To satisfy road lighting grade M3, the reflector was divided into nine parts, and the inclination of the reflecting surface was changed to have the desired light distribution. The fitted curves were drawn based on each point, following the formula that was derived. Through the Street Light Simulation of LightTools, we confirmed that it meets the M3 road lighting standard; we then made it directly and satisfied the lighting grade on an actual road, proving the validity of the design result.

Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors (집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

Eight-axis-polishing Machine for Large Off-axis Aspheric Optics

  • Rhee, Hyug-Gyo;Yang, Ho-Soon;Moon, Il-Kweon;Kihm, Hag-Yong;Lee, Jae-Hyub;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.394-397
    • /
    • 2011
  • For the purpose of fabricating off-axis aspheric optics, we propose an 8-axis-polishing machine combined with a testing tower whose height is up to 9 m. The proposed polishing machine was designed and analyzed by using a well-known finite element method. The eight axes of the machine have a synchronized motion generated by a computer, and each axis was calibrated by a heterodyne laser interferometer or an optical encoder. After calibration, the maximum positioning error of the machine was less than 2 ${\mu}m$ within a whole 2 m ${\times}$ 2 m area. A typical fabrication result of a ${\phi}1.5$ m concave mirror was also described in this manuscript.

Effects of Hair Colors on the Optical Illusion of Body Types

  • Li, Eun-Ji;Shim, Boo-Ja
    • Journal of Fashion Business
    • /
    • v.7 no.3
    • /
    • pp.14-23
    • /
    • 2003
  • The purpose of this study is to determine affects of hair colors on physical shapes and images through field survey and experimental research. For the purpose, this researcher surveyed 230 female college students residing in Busan about their dyed hair colors, and selected the subjects for the study. Then the researcher an experimental research on the subjects by suing test stimuli. Results of the study can be described as follows: Experiment of the Optical Illusion of Physical Shapes. For all items measured for the experiment, except four ones, if was found that hair colors provided significant efforts of optical illusion factor analysis, included horizontality, outlines of the body and face, a horizontal line of the shoulder, the length, verticality and a horizontal line of the face. According to hair colors, black made the body look slimmer and the face look apparent. White made the body height look low, the outline of the face look clear and the neck or shoulder look fleshed. Female college students whose hair color was orange looked unclear in the body silhouette, bright in the face and broad in the hip and shoulder. Other students whose hair color was red, attracting the line of vision upward most strongly, looked fleshed in the upper body and broad in the face. Finally, blue made the face look dark.

Comparison of Optical Characteristics between CCFL and EEFL in Direct-type Backlight Unit

  • Han, Jeong-Min;Han, Jin-Woo;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.268-273
    • /
    • 2007
  • In this study, It was studied about the luminance characteristics of 17 inch direct-type back light using EEFL(external electrode fluorescent lamp) and CCFL(cold cathode fluorescent lamp). The EEFL has a long life time because the electrode is installed outside of lamp. And it is produced in lower price than conventional CCFL. Moreover, it does not need process of installing internal electrode. However, the EEFL technology has several problems such as difficulty of designing driving inverter and preventing this phenomenon along the skin of lamps. We suggested two types of backlight unit for LCD TV application using the EEFL and the CCFL. We found optimized optical design parameters. We set the optical variation parameters such as lamp height, lamp distance, total thickness, and angles of inner walls. We achieved 7580 nits of center luminance, 82% of luminance uniformity by using 20 lamps of the EEFL and 7297 nits of center luminance, 78% of luminance uniformity by using 16 lamps of the CCFL.