• Title/Summary/Keyword: Optical Flow Equation

Search Result 45, Processing Time 0.029 seconds

Optical Flow Estimation of a Fluid Based on a Physical Model

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.539-544
    • /
    • 2009
  • An estimation of 3D velocity field including occluded parts without maxing tracer to the fluid had not only never been proposed but also impossible by the conventional computer vision algorithm. In this paper, we propose a new method of three dimensional optical flow of the fluid based on physical model, where some boundary conditions are given from a priori knowledge of the flow configuration. Optical flow is obtained by minimizing the mean square errors of a basic constraint and the matching error terms with visual data using Euler equations. Here, Navier-Stokes motion equations and the differences between occluded data and observable data are employed as the basic constrains. we verify the effectiveness of our proposed method by applying our algorithm to simulated data with partly artificially deleted and recovering the lacking data. Next, applying our method to the fluid of observable surface data and the knowledge of boundary conditions, we demonstrate that 3D optical flow are obtained by proposed algorithm.

A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV) (자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle Using a Single Camera (단일 카메라를 이용한 비쥬얼 서보 자율무인잠수정의 수중 도킹)

  • 이판묵;전봉환;홍영화;오준호;김시문;이계홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.316-320
    • /
    • 2003
  • This paper introduces an autonomous underwater vehicle (AUV) model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the AUV docking test.

  • PDF

Underwater Docking of an AUV Using a Visual Servo Controller (비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.142-148
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time for specific underwater works, such as repeated jobs at sea bed. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera mounted at the nose center of the AUV. To make the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and derives a state equation for the visual servoing AUV. This paper proposes a discrete-time MIMO controller minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servoing AUV, simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

  • PDF

Finite Element Analysis of Injection/Compression Molding Process (사출압축성형 공정에 대한 유한요소 해석)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

Analysis on the Flow Effect of the Twisted Nematic liquid Crystals (Twisted Nematic(TN) 액정에서의 흐름효과 해석)

  • Kim, Hoon;Park, Woo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.76-78
    • /
    • 2005
  • We coupled fluid balance equation and director balance equation from Ericksen-Leslie's continuum theory and observed the motion of Twisted Nematic (TN) Liquid Crystals. We simulated flow velocity distribution and director distribution. We interpreted the dynamic response characteristic caused by the flow. As the result of the simulation, We could see the flow effect. And this flow caused abnormal twist to 4msec in switching off state. We could prove that this abnormal twist is a direct cause of optical bounce phenomenon known well until now with the result of simulation.

  • PDF

Visual Servoing Control of a Docking System for an Autonomous Underwater Vehicle (AUV)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo;Hong, Young-Hwa;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.5-109
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time in underwater. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera. To make the visual servo control system , this paper derives an optical flow model of a camera mounted on an AUV, where a CCD camera is installed at the nose center of the AUV to monitor the docking condition. This paper combines the optical flow equation of the camera with the AUV's equation o...

  • PDF

Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System (첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현)

  • Yoon, Kyung-Han;Jung, Yong-Chul;Cho, Jae-Chan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.544-551
    • /
    • 2015
  • In this paper, the design and implementation results of the optical flow estimator (OFE) for moving object detection (MOD) in advanced driver assistance system (ADAS). In the proposed design, Brox's algorithm with global optimization is considered, which shows the high performance in the vehicle environment. In addition, Cholesky factorization is applied to solve Euler-Lagrange equation in Brox's algorithm. Also, shift register bank is incorporated to reduce memory access rate. The proposed optical flow estimator was designed with Verilog-HDL, and FPGA board was used for the real-time verification. Implementation results show that the proposed optical flow estimator includes the logic slices of 40.4K, 155 DSP48s, and block memory of 11,290Kbits.

Numerical Simulation of Flow-Induced Birefringence: Comparison of Injection and Injection/Compression Molding

  • Lee, Ho-Sang;Isayev, A.I.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • A computer code was developed to simulate the filling stage of an injection/compression molding process using a finite element method. The constitutive equation was the compressible Leonov model and the PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk under different processing conditions, including variations of the compression stroke and compression speed, were performed to determine their effects on the flow-induced birefringence. Simulated pressure traces were also compared to those obtained in conventional injection molding and with experimental data from the literature.

Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding (사출압축성형에서의 유동에 의한 복굴절 해석)

  • Lee H.-S.;Isayev A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF