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Abstract—An estimation of 3D velocity field 

including occluded parts without maxing tracer to the 

fluid had not only never been proposed but also 

impossible by the conventional computer vision 

algorithm. In this paper, we propose a new method of 

three dimensional optical flow of the fluid based on 

physical model, where some boundary conditions are 

given from a priori knowledge of the flow 

configuration. Optical flow is obtained by minimizing 

the mean square errors of a basic constraint and the 

matching error terms with visual data using Euler 

equations. Here, Navier-Stokes motion equations and 

the differences between occluded data and observable 

data are employed as the basic constrains. we verify 

the effectiveness of our proposed method by applying 

our algorithm to simulated data with partly artificially 

deleted and recovering the lacking data. Next, 

applying our method to the fluid of observable surface 

data and the knowledge of boundary conditions, we 

demonstrate that 3D optical flow are obtained by 

proposed algorithm.  

 

Index Terms—Optical flow, Naver-Stokes equation, 

Fluid flow, Regularization. 

 

 

I. INTRODUCTION 
 

IN fluid engineering, measuring of velocity field are 

carried out by numerical method or by some device 

instruments conventionally[1]~[4]. Estimation by 

image processing approach has a feature of noncontact 

with the flow. An optical flow is the apparent two 

dimensional velocity field obtained from two 

sequential images, in which the corresponding points 

are searched in some ways. Obtaining the velocity of 

rigid or deformable object may be easier than that of 

fluid. There are two major approaches to obtaining 

optical flow. One is the correlation method, and the 

other is the gradient method [5][6]. In the gradient 

method, a smoothness constraint is introduced to avoid 

the aperture problem, because the flow vectors are not 

determined uniquely without using some kinds of 

regularization as imposing spacial smoothness 

constraint to the flow vector field. The optical flow 

algorithm proposed by Horn & Shanck [5][6] is very 

effective and so many researches are followed and 

developed in various ways. However, the smoothness 

constraint has no strong bases but is only heuristics. 

Thus, it will be reasonable to use a physical model for 

the regularization or other kind of techniques to 

determine the solution uniquely when we know the 

characteristics of the object. Physical models were 

used such as for determining three dimensional motion 

of deformable objects from marker points on a object 

[7] and of lattice points of a spring model of faces [8], 

where motion equations were employed. In contrast to 

these in this paper, we propose 3D optical flow of the 

fluid using top surface image, where some boundary 

conditions are given from the surface image and a 

priori knowledge of the flow configuration is also 

given. It is well known that the physics of the fluid is 

given by Navier-Stokes equation (NSE). In this paper, 

we apply it to 3D case using the NSE for the 

regularization of the optical flow instead of the energy 

function; i.e., minimization of square errors. 

 

 

II. FLUID EQUATION 
 

In this paper, we deal with incompressible viscous 

fluid with constant density spacially and temporarily. 

The basic equations of the fluid are continuous 

equation and NSE. The continuous equation is 3D 

tubular structure (line) orthogonal to the xy-plane is 

modeled as  
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and the motion equation is  
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where U,V,W are velocity components along X,Y,Z 

axes, respectively, P is pressure, t is time, ρ  is 

density, is kinetic viscosity,  v  and gx, gy, gz are 

gravity components along the corresponding X, Y, Z 

axes, respectively. 

 

 

III. EVALUATION FUNCTION 
 

In addition to use fitness constraint of the measured 

image data obtained sequentially, we define an 

evaluation function using two constraint equations of 

continuity and the NSE. The first constraint of the 

equation of continuous is  

 
2)( ZYXc UUUe ++=            (5) 

 

where
Z

W
W

Y

V
V

X

U
U ZYX ∂

∂
=

∂

∂
=

∂

∂
= ,, . Second one of 

the motion equation is  
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and the third one by the measured image data is  
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where NSE(U),(V),(W) are equations of motion (Eq.(2) ~ 

(4)), Udata, Vdata, Wdata are measured data existed 

)1( ,, =WVUα  or not )0( ,, =WVUα . Thus, we define the 

total evaluation function  

 

DMc eeeE 21 λλ ++=              (8) 

where, 1λ ,
2λ are weighting coefficients. 

Mathematically, they are known as Lagrange's 

coefficients. We determined their values 

experimentally.  
 

 

IV. ANALYSIS 
 

The evaluation function over the region of interest 

is defined by 
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where the notations of 
XU  means partial 

differentiation of U  by X and 
XXU  means partial 

differentiation of 
XU  by X. Another notations are 

defined by the same manner. The solution of 

minimizing this type of integral is given by the 

following Euler equation : 
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We solve these nonlinear simultaneous differential 

equations by the Newton-Rapson method. 
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V. SIMULATION AND RESULTS 
 

The flow configuration used for simulation is 

shown in Fig. 1, where the bottom is wall and the top 

surface is free and the left side bottom surface has a 

step-like change. 

Boundary condition of the top surface is free flow 

with no wall.  The viscosity is made uniform 

independent of positions and time in the following all 

simulations. 

 

 

 

Fig.1 Definition of simulation field. 

 

 

A. Simulated flow 

First, we expand the Euler eq. and NSE to 

numerical equations by using software program 

Mathematica. We used a flow line vortex method for 

generating the simulated flow. Here, the pressure term 

including ambiguity is changed to stream function and 

disappears in the equations. 

We define some horizontal and vertical flow planes 

as shown in Fig. 2. The size of numerical simulation 

field [X×Y×Z] is 16×16×16. Fig. 2 shows a simulated 

flow. The initial and boundary condition for the 

velocity components are assigined to zero on the base 

plane [EFGH] and side plane [QRFE], which 

correspond to shaded regions in Fig. 1. 

 

 

 
(a)vertical plane          (b)horizontal plane 

Fig. 2 Simulated true flow. 

B. Recovery of lacking data cases 

When the velocity data are lacking at shaded 

portion of case 1~3, we recover the flow by the 

proposed algorithm. 

 

 

Fig. 3 case 1: All data are made lacking in a shaded plane. 

 

 

[case 1] Set the velocity data zero(lacking) on a X-Y 

horizontal plane (Z=12). The shaded portion of Fig. 3 

is area of set zero. The recovered results are shown in 

Fig. 4.  

 

 
(a)Initial flow     (b)converged flow 

(A)vertical plane 

 

 

(a)Initial flow         (b)converged flow 

(B)horizontal plane 

Fig. 4 Recovered flow of Fig.3(case 1). 

 

[case 2] Set the velocity data zero (lacking) on a Y-Z 

vertical plane(X=10). The shaded portion of Fig. 5 is 

area of set zero. The recovered results are shown in 

Fig.6. 
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Fig. 5 case 2: All data are made lacking in a shaded plane. 

 

 

(a)Initial flow     (b)converged flow 

(A)vertical plane 

 

  

(a)Initial flow         (b)converged flow 

(B)horizontal plane 

Fig. 6 Recovered flow of Fig.5(case 2). 

 

[case 3] Set the velocity data zero (75% lacking) on Y-

Z vertical planes (X=4~15). The shaded portion of Fig. 

7 is area of set zero. The recovered results are shown 

in Fig. 8. 

 

 

Fig. 7 case 3: Data are made lacking in shaded region 

which is 75% of all data. 

 

(a)Initial flow    (b)converged flow 

(A)vertical plane 

 

     

(a)Initial flow         (b)converged flow 

(B)horizontal plane 

Fig. 8 Recovered flow of Fig.7(case 3). 

 

 

We calculated the numerical evaluations of the 

proposed method by mean square error(NRMSE) 

shown Eq.(14). The velocity field of the lack-place 

can be reconstructed for almost all cases. 

 

 

C. 3D optical flow from top surface image data 

As the simulation of section 5.B, we intentionally 

made short cut of data and estimated the lacking data 

using our method, where the data were recovered by 

extrapolation and interpolation. it is valuable to 

estimate the 3D optical flow from top image data and 

a priori knowledge of the flow configuration. 

 

 

  

(a)vertical plane      (b)horizontal plane 

Fig. 9 Initial data for 3D flow. 
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[case 4] The 3D top surface image is easily obtained 

by noncontact way in practice.  Initial value is shown 

in Fig. 9(a)(b). Optical flow obtained are shown in Fig. 

10(a)(b)(c). 

 

 

   

(a)vertical plane       (b)horizontal plane 

 

 

(c)oblique 3D optical flow 

Fig. 10 3D flow (case 4). 

 

 

The NRMSE given by Eq. (14) of 3D flow are 

shown in Table 1.  
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where t

ijk

t

ijk

t

ijk wvu ,,  are true velocity of X, Y, Z 

component and c

ijk

c

ijk

c

ijk wvu ,,  are calculated velocity of 

X, Y, Z component, respectively. It is very difficult to 

obtain the 3D optical flow by conventional algorithm. 

In our method, the 3D velocity field can be 

reconstructed as a whole. However. the lower part of 

the RQST plane are calculated in small values. 

 

 

 

 

Table 1 Normalized error 

Simulation case 

number 
Number of 

iterations 

NRMSE 

Initial value converged 

value 
1 10000 0.352 0.077 
2 4000 0.247 0.032 
3 10000 0.861 0.114 
4 20000 0.902 0.270 

 

 

VI. CONCLUSIONS 
 

We proposed a method of using physics-based 

knowledge of the fluid motion. Here, we implemented 

it for the 3D fluid flow reconstruction of stream 

images using NSE. As a simulation, first, we 

intentionally made the artificial steady-flow with short 

of data and estimated the lacking data. As a result, 

almost all cases of the velocity field of the lack-place 

can be reconstructed. Next, we calculated the 3D flow 

by using practically usable surface image of the flow 

and a priori knowledge of flow construction. We 

evaluated the results by NMSE. Though 3D flow are 

obtained well, some parts are not so accurate. That is 

the problem remained to be solved.  
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