• Title/Summary/Keyword: Optical Energy Gap

Search Result 458, Processing Time 0.031 seconds

졸-겔법에 의한 CdS 분산$SiO_2$ Glass 박막의 비선형광학특성

  • 문종수;강종봉;김경문
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1353-1364
    • /
    • 1996
  • Recently semiconductor doped glasses have attracted attention as nonlinear optical materials because of their large third order nonlinear optical properties. The transparent and homogeneous CdS-doped SiO2 glass thin films were obtained by the dip=coating process of the sol-gel method. Thin films were consisted of glasses containing CdS microcrystallites which were formed by dissolved Cd2+ and S2- ions in a SiO2 matrix solutions. A subsequent thermal treatment of this samples led the formation of colloidal agglomerates and finally of microcrystallites. The size of CdS microcrystallites was about 4 to 15 nm after thermal treatments at various heating conditions. From the optical absorption spectra of the CdS-doped SiO2 glass films it was found that the absorption edge was blue-shifted compared with that of the bulk CdS crystal(~2, 4 eV) and that the amount of energy shift was inversely proportional to the crystal size. And the band gap energy increased with the decrease in crystallite size indicating that the quantum size effects occured.

  • PDF

Synthesis, Optical and Electrical Studies of Nonlinear Optical Crystal: L-Arginine Semi-oxalate

  • Vasudevan, P.;Sankar, S.;Jayaraman, D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.128-132
    • /
    • 2013
  • L-Arginine semi-oxalate (LASO) single crystal has been grown by solution growth technique at room temperature. The crystal structure and lattice parameters were determined for the grown crystal by single crystal X-ray diffraction studies. Photoluminescence studies confirm the violet fluorescence emission peak at 395 nm. Optical constants like band gap, refractive index, reflectance, extinction coefficient and electric susceptibility were determined from UV-VIS-NIR spectrum. The dielectric constant, dielectric loss and ac conductivity of the compound were calculated at different temperatures and frequencies to analyze the electrical properties. The solid state parameters such as plasma energy, Penn gap, Fermi energy and polarizability were calculated to analyze second harmonic generation (SHG). Nonlinear optical property was discussed to confirm the SHG efficiency of the grown crystal.

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon;Lee, Youn-Jung;Park, Jinjoo;Kim, Sunbo;Park, Hyeongsik;Kim, Sangho;Jung, Junhee;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.113-121
    • /
    • 2017
  • The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

Characterization of Band Gaps of Silicon Quantum Dots Synthesized by Etching Silicon Nanopowder with Aqueous Hydrofluoric Acid and Nitric Acid

  • Le, Thu-Huong;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1523-1528
    • /
    • 2014
  • Silicon quantum dots (Si QDs) were synthesized by etching silicon nanopowder with aqueous hydrofluoric acid (HF) and nitric acid ($HNO_3$). Then, the hydride-terminated Si QDs (H-Si QDs) were functionalized by 1- octadecene (ODE). By only controlling the etching time, the maximum luminescence peak of octadecylterminated Si QDs (ODE-Si QDs) was tuned from 404 nm to 507 nm. The average optical gap was increased from 2.60 eV (ODE-Si QDs-5 min) for 5 min of etching to 3.20 eV (ODE-Si QDs-15 min) for 15 min of etching, and to 3.40 eV (ODE-Si QDs-30 min) for 30 min of etching. The electron affinities (EA), ionization potentials (IP), and quasi-particle gap (${\varepsilon}^{qp}_{gap}$) of the Si QDs were determined by cyclic voltammetry (CV). The quasi-particle gaps obtained from the CV were in good agreement with the average optical gap values from UV-vis absorption. In the case of the ODE-Si QDs-30 min sample, the difference between the quasi-particle gap and the average optical gap gives the electron-hole Coulombic interaction energy. The additional electronic levels of the ODE-Si QDs-30 min and ODE-Si QDs-15 min samples determined by the CV results are interpreted to have originated from the Si=O bond terminating Si QD.

Optical Properties of Cdlnsub 2Ssub 4 and Cdlnsub 2Ssub 4 : $CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$Single Crystals ($CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$ 단결정의 광학적 특성)

  • Choe, Seong-Hyu;Bang, Tae-Hwan;Kim, Hyeong-Gon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.296-302
    • /
    • 1999
  • $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ singlecrystals of thenormal spinel structure were grown by the C.T.R. method. The optical energy band structure of these compounds had a indirect band gap at the fundamental optical absorption band edge. The direct and the indirect energy gaps are found to be 2.325 and2.179eV for $Cdln_2S_4$ , and 2.303 and 2.169eV for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ at 5K, respectivly. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region with decreasing temperature, and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The Varshni constants$\alpha and \beta$ of the direct energy gap are given by $13.39{\times}10_{-4}eV/K$ and 509 K for $Cdln_2S_4$ and $29.73{\times}10_{-4} eV/K$ and 1398K for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$. The Varshni constants ${\alpha}and {\beta}$ of the indirect energy gap are given by 9.68${\times}10^{-4}$ eV/K 308K for $Cdln_2S_4$ and $13.33{\times}10_{-4}eV/K$ and 440K for $CdIn_2S_4 : Co^{2+}$ respectivly. The impurity optical absorption peaks due to cobalt dopant are observed in $CdIn_2S_4 : Co^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Co_{2+}$ ions located at $T_d$ symmetry site of $Cdln_2S_4$ host lattece.

  • PDF

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

Tunable Photonic Band Gap Materials and Their Applications

  • Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.261-261
    • /
    • 2010
  • Photonic band gap (PBG) materials have been of great interest due to their potential applications in science and technology. Their applications can be further extended when PBG becomes tunable against various chemical and electrical stimuli. In recent, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG materials. For example, the characteristic volume phase transition of gels in response to the various external stimuli including temperature, pH, ionic strength, solvent compositions and electric field were recently combined with the unique optical properties of photonic crystals to form unprecedented highly responsive optical components. Since these responsive photonic crystals are capable of reversibly converting chemical or electrical energy into characteristic optical signals, they have been considered as a good platform for label-free chemical or biological detection, actuators or optical switches as well as a model system for investigating gel swelling behavior. Herein, we report block copolymer photonic gels self-assembled from polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers. In this talk, we are going to demonstrate that selective swelling of lamellar structure can be effectively utilized for fabricating PBG materials with extremely large tunability. Optical properties and their applications will be discussed.

  • PDF

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

Optical Properties of Erbium-doped GaSe Single Crystals (Erbium 첨가에 의한 GaSe 단결정의 광학적 특성)

  • 이우선;김형곤;정용호;김남오
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.188-194
    • /
    • 1998
  • The GaSe:$Er^{3+}$(5mol%) single crystals grown by the Bridgman technique displayed a direct energy gap at 1.79 eV and an indirect energy gap of 1.62 eV at 300 ${\circ}^$K. Also an optical absorption peak by impurity was found at 6505 $cm^{-1}$. The peak identified the origin of the electronic transitions to be between the energy levels of $Er^{3+}$ ions.

  • PDF

Temperature Driven Phase Transition of Organic-Inorganic Halide Perovskite Single Crystals

  • Byun, Hye Ryung;Kim, Hyo In;Byun, Su Jeong;Park, Dae Young;Jeong, Mun Seok;Byeon, Clare Chisu
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1729-1734
    • /
    • 2018
  • Organic-inorganic halide perovskite single crystals undergo phase transition of being cubic, tetragonal, or orthorhombic depending on the temperature. We investigated the $CH_3NH_3PbBr_{3-x}I_x$ single crystals grown by the inverse temperature crystallization method with temperature-dependent UV-Vis absorption and photoluminescence. From the temperature-dependent absorption measurement, the optical band gap is extracted by derivation of absorption spectrum fitting and Tauc plot. In our results, $CH_3NH_3PbBr_{3-x}I_x$ single crystals show that an abrupt change in optical band gap, PL peak position and intensity appears around 120 K - 170 K regions, indicating the phase transition temperature.