DOI QR코드

DOI QR Code

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon (Department of Energy Science, Sungkyunkwan University) ;
  • Lee, Youn-Jung (School of Electronic Electrical Engineering, College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Jinjoo (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Sunbo (Department of Energy Science, Sungkyunkwan University) ;
  • Park, Hyeongsik (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Sangho (Department of Energy Science, Sungkyunkwan University) ;
  • Jung, Junhee (Department of Energy Science, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Energy Science, Sungkyunkwan University)
  • Received : 2017.07.31
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

Keywords

References

  1. Y. Ide, Y. Saito, A. Yamada, M. Konagai, "Intrinsic Microcrystalline Silicon Thin Films Prepared by Hot-Wire Cell Method and Their Application to Solar Cells", Jpn. J. Appl. Phys. Vol. 42, pp. 1521, 2003. https://doi.org/10.1143/JJAP.42.1521
  2. M. Isomura, M. Kondo, A. Matsuda, "Device Grade Amorphous Silicon Prepared by High-Pressure Plasma", Jpn. J. Appl. Phys. Vol. 41, pp. 1947-1951, 2002. https://doi.org/10.1143/JJAP.41.1947
  3. S. M. Iftiquar, "The roles of deposition pressure and rf power in opto-electronic properties of a-SiO:H films", J. Phys. D: Appl. Phys. Vol. 31, pp. 1630-1641, 1998. https://doi.org/10.1088/0022-3727/31/14/004
  4. C. Shin, S.M. Iftiquar, J. Park, Y. Kim, S. Baek, J. Jang, M Kim, J. Jung, Y. Lee, S. Kim, J. Yi, "Optimization of intrinsic hydrogenated amorphous silicon deposited by very high-frequency plasma-enhanced chemical vapor deposition using the relationship between Urbach energy and silane depletion fraction for solar cell application", Thin Solid Films Vol. 547, pp. 256-262, 2013. https://doi.org/10.1016/j.tsf.2013.01.023
  5. S. M. Iftiquar, "The roles of deposition pressure and rf power in opto-electronic properties of a-SiO:H films", J. Phys. D: Appl. Phys. Vol. 31, pp. 1630-1641, 1998. https://doi.org/10.1088/0022-3727/31/14/004
  6. W. Beyer, "Infrared absorption and hydrogen $e{\euro}usion$ of hydrogenated amorphous silicon-oxide films", J. Non-Cryst. Solids, Vol. 266-269, pp. 845-8497, 2000. https://doi.org/10.1016/S0022-3093(99)00853-4
  7. S. Mukhopadhyay, S. Ray, "Silicon rich silicon oxide films deposited by radio requency plasma enhanced chemical vapor deposition method: Optical and structural properties", Appl. Surf. Sci., Vol. 257, pp. 9717- 9723, 2011. https://doi.org/10.1016/j.apsusc.2011.05.112
  8. J. Sritharathikhun, A. Moollakorn, S. Kittisontirak, A. Limmanee, K. Sriprapha, "High quality hydrogenated amorphous silicon oxide film and its application in thin film silicon solar cells", Current Applied Physics Vol. 11, pp. S17-S20, 2011. https://doi.org/10.1016/j.cap.2010.11.100
  9. S.M. Iftiquar, A.K. Barua, "Control of the properties of widebandgap a-SiC : H films prepared by RF PECVD method by varying methane flow rate", Solar Energy Materials and Solar Cells Vol. 56, pp. 117-123, 1999. https://doi.org/10.1016/S0927-0248(98)00148-2
  10. C.-H. Cheng, Y.-H. Lin, J.-H. Chang, C.-I. Wu, G.-R. Lin, "Semi-transparent Si-rich SixC1-x p-i-n photovoltaic solar cell grown by hydrogen-free PECVD", RSC Adv., Vol. 4, pp. 18397-18405, 2014. https://doi.org/10.1039/c3ra41173g
  11. B. Yan, L. Zhao, B. Zhao, J. Chen, H. Diao, G. Wang, Y. Mao, W. Wang, "Wide bandgap p-type window layer prepared by trimethylboron doping at high temperature for a-Si:H superstrate solar cell", J. Non-Cryst. Solids, Vol. 385, pp. 3243-3247, 2012.
  12. S. Y Myong, K. S. Lim and J. M. Pears, "Double amorphous silicon-carbide p-layer structures producing highly stabilized pin-type protocrystalline silicon multilayer solar cells", Appl. Phys. Lett., Vol. 87, pp.193509-1-193509-3, 2005. https://doi.org/10.1063/1.2126802
  13. P. Chaudhuri, A.R. Middya and S. Ray, "Photogeneration and recombination of carriers in hydrogenated amorphous silicon germanium alloys", Solar Energy Materials and Solar Cells, Vol. 30, pp. 233-243, 1993. https://doi.org/10.1016/0927-0248(93)90143-Q
  14. Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I., "Triple-junction thinfilm silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%", Appl. Phys. Lett., Vol 106, pp. 213902-1-21390-4, 2015. https://doi.org/10.1063/1.4921794
  15. W. Spear and P. L. Comber, "Substitutional doping of amorphous silicon", Solid State Comm. Vol. 17 pp. 1193-1196, 1975. https://doi.org/10.1016/0038-1098(75)90284-7
  16. K. Yoon, Y. Kim, J. Park, C. H. Shin, S. Baek, J. Jang, S. M. Iftiquar, J. Yi, "Preparation and characterization of p-type hydrogenated amorphous silicon oxide film and its application to solar cell", J. of Non-Cryst. Solids Vol. 357, pp. 2826-2832, 2011. https://doi.org/10.1016/j.jnoncrysol.2011.03.009
  17. B. Yan, L. Zhao, B. Zhao, J. Chen, H. Diao, G. Wang, Y. Mao, W. Wang, "Wide bandgap p-type window layer prepared by trimethylboron doping at high temperature for a-Si:H superstrate solar cell", J. Non-Cryst. Solids, Vol. 358, pp. 3243-3247, 2012. https://doi.org/10.1016/j.jnoncrysol.2012.07.040
  18. H. Tan, P. Babal, M. Zeman, A. H. M.Smets, "Wide band gap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells", Sol. Energ. Mat. Sol. Cells, Vol. 132, pp. 597-605, 2015. https://doi.org/10.1016/j.solmat.2014.10.020
  19. V. Smirnov, A. Lambertz, S. Tillmanns, and F. Finger, "p- and n-type microcrystalline silicon oxide (${\mu}c$-SiOx:H) for applications in thin film silicon tandem solar cells", Can. J. Phys., Vol. 92, pp. 932-935, 2014. https://doi.org/10.1139/cjp-2013-0640
  20. J. H. Shim, S.-W. Ahn, H.-M, Lee, "Microcrystalline silicon oxide (mc-SiO:H) alloys as a contact layer for highly efficient Si thin film solar cell", Curr. Appl. Phys., Vol. 13, pp. 1401-1403, 2013. https://doi.org/10.1016/j.cap.2013.04.014
  21. T. Krajangsang, S. Kasashima, A. Hongsingthong, P. Sichanugrist, M. Konagai, "Effect of p-${\mu}c$-Si1-xOx:H layer on performance of hetero-junction microcrystalline silicon solar cells under light concentration", Curr. Appl. Phys., Vol. 12, pp. 515-520, 2012. https://doi.org/10.1016/j.cap.2011.08.011
  22. A. Lambertz, F. Finger, B. Hollander, J. K. Rath, R. E. I. Schropp, "Boron-doped hydrogenated microcrystalline silicon oxide (${\mu}c$-SiOx:H) for application in thin-film silicon solar cells", J. Non-Cryst. Solids, Vol. 358, pp. 1962-1965, 2012. https://doi.org/10.1016/j.jnoncrysol.2011.12.047
  23. K. Sriprapha, N. Sitthiphol, P. Sangkhawong, V. Sangsuwan, A. Limmanee, J. Sritharathikhun. "p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells", Curr. Appl. Phys., Vol. 11, pp. 547-549, 2011. https://doi.org/10.1016/j.cap.2010.09.011
  24. P. Cuony, M. Marending, T. L. Alexander, M. Boccard, G. Bugnon, M. Despeisse, C. Ballif, "Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells", Appl. Phys. Lett., Vol, 97, pp. 213502, 2010. https://doi.org/10.1063/1.3517492
  25. K. Schwanitz, S. Klein,T. Stolley, M. Rohde,D. Severin, R. Trassl, "Anti-reflective microcrystalline silicon oxide p-layer for thin-film silicon solar cells on ZnO", Sol. Energ. Mat. Sol. Cells, Vo. 105, pp. 187-191, 2012. https://doi.org/10.1016/j.solmat.2012.06.003
  26. V. Smirnov, A. Lambertz, F. Finger, "Electronic and structural properties of n-type microcrystalline silicon oxide (${\mu}c$-SiOx:H) films for applications in thin film silicon solar cells", Energy Procedia, Vol. 84, pp. 71-77, 2015. https://doi.org/10.1016/j.egypro.2015.12.297
  27. S. Y. Myong, L. S. Jeon, "Improved light trapping in thin-film silicon solar cells via alternated n-type silicon oxide reflectors", Sol. Energ. Mat. Sol. Cells, Vo. 119, pp. 77-83, 2013. https://doi.org/10.1016/j.solmat.2013.05.033
  28. C. Banerjee, T. Srikanth, U. Basavaraju, R. M. Tomy, M. G. Sreenivasan, K. Mohanchandran, S. Mukhopadhyay, A. K. Barua, "Development of n-${\mu}c$-SiOx:H as cost effective back reflector and its application to thin film amorphous silicon solar cells", Sol. Energy, Vol. 97, pp. 591-595, 2013. https://doi.org/10.1016/j.solener.2013.09.021
  29. S. Kim, H. Lee, J.-W. Chung, S.-W. Ahn, H.-M. Lee, "n-Type microcrystalline silicon oxide layer and its application to high-performance back reflectors in thin-film silicon solar cells", Curr. Appl. Phys., Vol. 13, pp. 743-747, 2013. https://doi.org/10.1016/j.cap.2012.11.017
  30. X. D. Zhang, Q. Yue, X. X. Zheng, X. H. Geng, Y. Zhao, "Plasma deposition of n-SiOx nanocrystalline thin film for enhancing the performance of silicon thin film solar cells", Thin Solid Films, Vol. 520, pp. 684-688, 2011. https://doi.org/10.1016/j.tsf.2011.06.068
  31. P.-W. Chen, P.-L. Chen, C.-C. Tsai, "Development of Wider Bandgap n-type a-SiOx:H and ${\mu}c$-SiOx:H as Both Doped and Intermediate Reflecting Layer for a-Si:H/a-Si1-xGex:H Tandem Solar Cells", Electron. Mater. Lett., Vol. 12, pp. 445-450, No. 4, 2016. https://doi.org/10.1007/s13391-016-4004-1
  32. V. Smirnov, A. Lambertz, B. Grootoonk, R. Carius, F. Finger, "Microcrystalline silicon oxide (${\mu}c$-SiOx:H) alloys: A versatile material for application in thin film silicon single and tandem junction solar cells", J. Non-Cryst. Solids, Vol. 358, pp. 1954-1957, 2012. https://doi.org/10.1016/j.jnoncrysol.2011.12.019
  33. S. Kirner, S. Calnan, O. Gabriel, S. Neubert, M. Zelt, B. Stannowski, B. Rech, R. Schlatmann, "An improved silicon-oxide-based intermediate-reflector for micromorph solar cells", Phys. Status Solidi C, Vol. 9, No. 10-11, pp. 2145-2148, 2012. https://doi.org/10.1002/pssc.201200243
  34. A. Lambertz, T. Grundler, F. Finger, "Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells", J. Appl. Phys., Vol. 109, pp. 113109, 2011. https://doi.org/10.1063/1.3592208
  35. H. Watanabe, K. Haga, T. Lohner, "Structure of high-photosensitivity silicon-oxygen alloy films", J. Non-Cryst. Solids, Vol. 164-166, pp. 1085-1088, 1993. https://doi.org/10.1016/0022-3093(93)91187-8
  36. Y. Matsumoto, F. Melendez, R. Asomoza, "Plasma CVD deposited p-type silicon oxide wide-bandgap material for solar cells", Sol. Energy. Mat. Sol. Cells, Vo. 52, pp. 251-260, 1998. https://doi.org/10.1016/S0927-0248(97)00239-0
  37. A. Sarker, A. K. Barua, "Development of High Quality P-Type Hydrogenated Amorphous Silicon Oxide Film and Its Use in Improving the Performance of Single Junction Amorphous Silicon Solar Cells", Jpn. J. Appl. Phys., Vol. 41, pp. 765-769, 2002 https://doi.org/10.1143/JJAP.41.765
  38. D.-W. Kang, P. Sichanugrist, B. Janthong, M. A. Khan, C. Niikura, M. Konagai, "Development of Wide Band Gap P-a-SiOxCy:H Using Additional Trimethylboron as Carbon Source Gas", Electron. Mater. Lett., Vol. 12, No. 4, pp. 462-467, 2016. https://doi.org/10.1007/s13391-016-4007-y
  39. T. Jana, S. Ray, "Microcrystalline silicon phase in silicon oxide thin films developed by photo-CVD technique", Thin Solid Films Vol. 376, pp. 241-248, 2000. https://doi.org/10.1016/S0040-6090(00)01211-6
  40. Y. Matsumoto, Z. Yu, R. V. Sanchez, "Microcrystalline-phase p-type a-Si:O:H windows prepared by Cat-CVD", Sol. Energy. Mat. Sol. Cells, Vol. 92, pp. 576-580, 2008. https://doi.org/10.1016/j.solmat.2007.12.008
  41. K. Sriprapha, N. Sitthiphol, P. Sangkhawong, V. Sangsuwan, A. Limmanee, J. Sritharathikhun, "p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells", Curr. Appl. Phys., Vol. 11, pp. S47-S49, 2011. https://doi.org/10.1016/j.cap.2010.11.008
  42. A. Lambertz, F. Finger, B. Hollander, J. K. Rath, R. E. I. Schropp, "Boron-doped hydrogenated microcrystalline silicon oxide (${\mu}c$-SiOx:H) for application in thin-film silicon solar cells", J. Non-Cryst. Solids, Vol. 358, pp. 1962-1965, 2012. https://doi.org/10.1016/j.jnoncrysol.2011.12.047
  43. T. Krajangsanga, S. Kasashimaa, A. Hongsingthonga, P. Sichanugrista, M. Konagai, "Effect of p-${\mu}c$-Si1xOx:H layer on performance of hetero-junction microcrystalline silicon solar cells under light concentration", Curr. Appl. Phys., Vol. 12, pp. 515-520, 2012. https://doi.org/10.1016/j.cap.2011.08.011
  44. J. H. Shim, S.-W. Ahn, H.-M. Lee, "Microcrystalline silicon oxide (${\mu}c$-SiO:H) alloys as a contact layer for highly efficient Si thin film solar cell", Curr. Appl. Phys., Vol. 13, pp. 1401-1403, 2013. https://doi.org/10.1016/j.cap.2013.04.014
  45. V. Smirnov, A. Lambertz, S. Tillmanns, and F. Finger, "p- and n-type microcrystalline silicon oxide (${\mu}c$-SiOx:H) for applications in thin film silicon tandem solar cells:, Can. J. Phys., Vol. 92, pp. 932-935, 2014. https://doi.org/10.1139/cjp-2013-0640
  46. H. Tan, P. Babal, M. Zeman, A. H. M.Smets, Wide band gap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells", Sol. Energy. Mat. Sol. Cells, Vol. 132, pp. 597-605, 2015. https://doi.org/10.1016/j.solmat.2014.10.020
  47. S. Inthisang, K. Sriprapha, S. Miyajima, A. Yamada, M. Konagai, "Hydrogenated Amorphous Silicon Oxide Solar Cells Fabricated near the Phase Transition between Amorphous and Microcrystalline Structures", Jpn. J. Appl. Phys., Vol. 48, pp. 122402, 2009. https://doi.org/10.1143/JJAP.48.122402
  48. K. Sriprapha, C. Piromjit, A. Limmanee, J. Sritharathikhun, "Development of thin film amorphous silicon oxide/microcrystalline silicon double-junction solar cells and their temperature dependence", Sol. Energy. Mat. Sol. Cells, Vol. 95, pp. 115-118, 2011. https://doi.org/10.1016/j.solmat.2010.05.010
  49. J. Sritharathikhun, A. Moollakorn, S. Kittisontirak, A. Limmanee, Kobsak Sriprapha, "High quality hydrogenated amorphous silicon oxide film and its application in thin film silicon solar cells", Curr. Appl. Phys., Vol. 11, pp. S17-S20, 2011. https://doi.org/10.1016/j.cap.2010.11.100
  50. K. Sriprapha, A. Hongsingthong, T. Krajangsang, S. Inthisang, S. Jaroensathainchok, A. Limmanee, W. Titiroongruang, J. Sritharathikhun, "Development of thin film a-SiO:H/a-Si:H double-junction solar cells and their temperature dependence", Thin Solid Films, Vol. 546, pp. 398-403, 2013. https://doi.org/10.1016/j.tsf.2013.05.137
  51. D. Y. Kim, E. Guijt, F. T. Si, R. Santbergen, J. Holovsky, O. Isabella, R. A.C.M.M. van Swaaij, M. Zeman, "Fabrication of double- and triple-junction solar cells with hydrogenated amorphous silicon oxide (a-SiOx:H) top cell ", Sol. Energy. Mat. Sol. Cells, Vo. 141, pp. 148-153, 2015. https://doi.org/10.1016/j.solmat.2015.05.033
  52. P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A. Feltrin, C. Ballif, "In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells", Appl. Phys. Lett., Vol, 91, pp. 1-3, 2007.
  53. S. Kim, H. Lee, J.-W. Chung, S.-W. Ahn, H.-M. Lee, "n-Type microcrystalline silicon oxide layer and its application to high-performance back reflectors in thin-film silicon solar cells", Curr. Appl. Phys., Vol. 13, pp. 743-747, 2013. https://doi.org/10.1016/j.cap.2012.11.017
  54. P. Babal, J. Blanker, R. Vasudevan, A. H. M. Smets, M. Zeman, "Microstructure analysis of n-doped ${\mu}c$-SiOx:H reflector layers and their implementation in stable a-Si:H p-i-n junctions", Proc. 38th IEEE Photovoltaic Specialists Conf., pp. 321-326, 2012.
  55. L. V. Mercaldo, P. D. Veneri, I.Usatii, E. M. Esposito, G. Nicotra, "Properties of mixed phase n-doped silicon oxide layers and application in micromorph solar cells", Sol. Energy. Mat. Sol. Cells, Vo. 119, pp. 67-72, 2013. https://doi.org/10.1016/j.solmat.2013.05.030
  56. P.-W. Chen, P.-L. Chen, C.-C. Tsai, "Development of Wider Bandgap n-type a-SiOx:H and ${\mu}c$-SiOx:H as Both Doped and Intermediate Reflecting Layer for a-Si:H/a-Si1-xGex:H Tandem Solar Cells", Electron. Mater. Lett., Vol. 12, pp. 445-450, 2016. https://doi.org/10.1007/s13391-016-4004-1
  57. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 49)", Prog. Photovolt: Res. Appl., Vol. 25, pp. 3-13, 2017. https://doi.org/10.1002/pip.2855
  58. K. Nomoto, Y. Urano, J. Guizot, L. Ganguly, A. Matsuda, "Role of Hydrogen Atoms in the Formation Process of Hydrogenated Microcrystalline Silicon", Jpn. J. Appl. Phys Vol. 29, pp. 1372-1375, 1990. https://doi.org/10.1143/JJAP.29.1372
  59. M. Katiyar, J. R. Abelson, "Investigation of hydrogen plasma induced phase transition from a-Si:H to mc-Si:H using real time infrared spectroscopy", Mater. Sci. Eng., A Vol. 304-306, pp. 349-352, 2001. https://doi.org/10.1016/S0921-5093(00)01528-8
  60. N. Layadi, C. Roca, B. Drevillon, I. Solomon, "Real-time spectroscopic ellipsometry study of the growth of amorphous and microcrystalline silicon thin films prepared by alternating silicon deposition and hydrogen plasma treatment", Phys. Rev. B, Condens. Matter Vol. 52, pp. 5136-5143, 1995. https://doi.org/10.1103/PhysRevB.52.5136
  61. M. Fontcuberta, A. Bertomeu, C. Roca, "The role of hydrogen in the formation of microcrystalline silicon", Mater. Sci. Eng., B Vol. 69, pp. 559-563, 2000.
  62. J. R. Abelson, "Plasma deposition of hydrogenated amorphous silicon: Studies of the growth surface", Appl. Phys. A, Solids Surf. 56, pp. 493-512, 1993. https://doi.org/10.1007/BF00331400
  63. I. Kaiser, N. H. Nickel, W. Fuhs, W. Pilz, "Hydrogen-mediated structural changes of amorphous and microcrystalline silicon", Phys. Rev. B Vol. 58, R1718(R), 1998. https://doi.org/10.1103/PhysRevB.58.R1718
  64. J. B. John, N. P. Gregory, "Bond selectivity in silicon film growth", Science Vol. 256, pp. 1304-1306, 1992. https://doi.org/10.1126/science.256.5061.1304
  65. N. H. Nickel, W. B. Jackson, "Hydrogen-mediated creation and annihilation of strain in amorphous silicon", Phys. Rev. B Vol. 51, pp. 4872, 1995. https://doi.org/10.1103/PhysRevB.51.4872
  66. H. Shirai, J. Hanna, I. Shimizu, "Role of Atomic Hydrogen During Growth of Hydrogenated Amorphous Silicon in the 'Chemical Annealing'", Jpn. J. Appl. Phys Vol. 30, pp. L679-L682, 1991. https://doi.org/10.1143/JJAP.30.L679
  67. W. B. Jackson, R. J. Nemanich, "The absolute luminescence quantum efficiency in hydrogenated amorphous silicon", J. Non-Cryst. Solids, Vol. 59-60, pp. 353-365, 1983. https://doi.org/10.1016/0022-3093(83)90593-8
  68. C. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, S. T. Pantelides, "Theory of hydrogen diffusion and reactions in crystalline silicon", Phys. Rev. B Vol. 39, pp. 10791, 1989. https://doi.org/10.1103/PhysRevB.39.10791
  69. B. Tuttle, J. B. Adams, "Energetics of hydrogen in amorphous silicon: An ab initio study", Phys. Rev. B Vol., Vol. 57, 12859, 1998. https://doi.org/10.1103/PhysRevB.57.12859
  70. S. Sriraman, S. Agarwal, E. S. Aydil, D. Maroudas, "Mechanism of Hydrogen Induced Crystallization of Amorphous Silicon", Nature, Vol. 418, pp. 62-65, 2002. https://doi.org/10.1038/nature00866
  71. B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C.-S. Jiang, "Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell", Appl. Phys. Lett., Vol. 99, pp. 113512-1, 2011. https://doi.org/10.1063/1.3638068
  72. I. A. Yunaz, A. Yamada, M. Konagai, "Theoretical Analysis of Amorphous Silicon Alloy Based Triple Junction Solar Cells", Jpn. J. Appl. Phys., Vol. 46, pp. 1152-1154, 2007. https://doi.org/10.1143/JJAP.46.L1152
  73. T. Matsui, K. Maejima, A. Bidiville, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, "High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design", Jpn. J. Appl. Phys. Vol. 54, pp. 08KB10, 2015. https://doi.org/10.7567/JJAP.54.08KB10
  74. H. Sai, K. Saito, N. Hozuki, M. Kondo, "Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells", Appl. Phys. Lett., Vol. 102, pp. 053509, 2013. https://doi.org/10.1063/1.4790642
  75. H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, H. Katayama, Y. Takeuchi, I. Yoshida, "Triplejunction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%", Appl. Phys. Lett., Vol. 106, pp. 213902, 2015. https://doi.org/10.1063/1.4921794