• Title/Summary/Keyword: Optical Coupling

Search Result 590, Processing Time 0.044 seconds

LED Light Coupler Design for a Very Thin Light Guide (초경박 도광판을 위한 LED 광-접합기 설계)

  • Lee, Jun-Ho;Jang, Won-Seok;Yu, Yeong-Eun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.15-16
    • /
    • 2007
  • A design of a light coupler between a LED and a very thin light guide (0.2mm thickness) is presented. Due to the light guide's very thin thickness, conventional light couplings between LEDs and light guides do not provide enough coupling efficiency. We investigate two different coupling methods: side coupling using a complex-shaped lens and bottom coupling using a grating. This paper presents a draft design of the first approach which couples light from 0.4mm LED to 0.2mm light guide without significant losses.

  • PDF

Optical Characteristics of Blazed Grating-Assisted Directional Coupler (Blazed 격자 구조형 방향성 결합기의 광학 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.175-180
    • /
    • 2019
  • The optical characteristics and power transfers between guiding channels of blazed grating-assisted directional coupler (B-GADC) are evaluated in detail by using novel and rigorous modal transmission-line theory (MTLT) based on eigenvalue problem. To evaluate the coupling efficiency of B-GADC, the dispersion curves as a function of the grating period and wavelength are analyzed numerically for quasi-TE and quasi-TM modes. Furthermore, symmetric, sawtooth and asymmetric grating profiles are considered to know the effect of blazing characteristics on power transfer of GADC. The numerical results show that the grating period for minimum-gap condition to obtain maximum power transfer decreases gradually as the blazed structure changes from symmetric to asymmetric profile. On the other hand, the coupling length increases reversely.

Measurement and Analysis of Loss in Optical Directional Couplers

  • Leepila, R.;Jangsilp, R.;Noppanakeepong, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.484-487
    • /
    • 2004
  • Symmetric directional couplers are widely used in interferometers, switches, and various signal processing devices. Recently, several optical couplers using multimode fibers were reported, but these suffer from inefficient coupling of light into a branching fiber and/or low directivity. This paper presents the measurement and analysis of loss in the connection of optical fibers via the optical directional couplers. The functionality of the device is based on the principle that is symmetrical, the power in excited mode can be unambiguously directed into one of the output channel by varying and of its parameters. In this experiment, we measure the power of loss in the optical directional coupler at various radius of curvature. Before the measurement of loss in x-coupler, we polish the contact of the fiber surface in order that light can penetrate through another port. The results show that, when the radius of curvature is increased, the loss power is decreased and also approaches of the straight line case.

  • PDF

Hybrid Atmospheric Compensation in Free-Space Optical Communication

  • Wang, Tingting;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Since the direct-gradient (DG) method uses the Shack-Hartmann wave front sensor (SH-WFS), based on the phase-conjugation principle, for atmospheric compensation in free-space optical (FSO) communication, it cannot effectively correct high-order aberrations. While the stochastic parallel gradient descent (SPGD) can compensate the distorted wave front, it requires more calculations, which is sometimes undesirable for an FSO system. A hybrid compensation (HC) method is proposed by properly using the DG method and SPGD algorithm to improve the performance of FSO communication. Simulations show that this method can well compensate wave-front aberrations and upgrade the coupling efficiency with few computations, preferable correction results, and rapid convergence rate.

Efficient Optical Intensity Modulator Based on the Electrically Tunable LiNbO3 Reflection Grating for Analog Fiber-Optic Links

  • Jung I-Young Michelle;Shin Dong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • We investigate the efficiency of an optical intensity modulator based on an electrically tunable $LiNbO_3$ reflection grating. Assuming a grating coupling coefficient and the waveguide propagation loss, waveguide length is varied to find its effect on the modulator slope efficiency and the device capacitance. With the low propagation loss of the $LiNbO_3$ waveguide, a very efficient optical intensity modulator can be achieved for a low frequency (${\sim}1GHz$) as long as the requirement for the grating coupling coefficient is satisfied.

Optical bench design rule formulated by statistical design of experiment (통계적 실험 계획법을 이용한 광학 벤치 설계 규칙의 설정)

  • 박세근;이재영;이승걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.123-127
    • /
    • 2002
  • In order to set up the design rule of micro optical bench, optical coupling efficiencies of two sets of test benches are calculated. Simple linear connections of incoming and outgoing optical fibers with and without ball lenses are designed. Positional errors that are possible in actual fabrication processes are considered in the calculations and their tolerances are determined from 3dB conditions. For a simple fiber-to-fiber connection, the working distance is limited to $2.7\mu\textrm{m}$ and tilt error $5.8^{\circ}$. When ball lenses are located in front of each fiber, the working distance can be extended over $60\mu\textrm{m}$ , but the positional errors have the strong interaction among position parameters and thus should be considered simultaneously for tolerance design.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Lee, Jae-Sung;Kim, Sang-Hoon;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

Design of Integrated-Optic Biosensor Based on the Evanescent-Field and Two-Horizontal Mode Power Coupling of Si3N4 Rib-Optical Waveguide (Si3N4 립-광도파로의 두-수평모드 파워결합과 소산파 기반 집적광학 바이오센서 설계)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.172-179
    • /
    • 2020
  • We studied an integrated-optic biosensor configuration that operates at a wavelength of 0.63 ㎛ based on the evanescent-wave and two horizontal mode power coupling of Si3N4 rib-optical waveguides formed on a Si/SiO2/Si3N4/SiO2 multilayer thin films. The sensor consists of a single-mode input waveguide, followed by a two-mode section which acts as the sensing region, and a Y-branch output for separating the two output waveguides. The coupling between the two propagating modes in the sensing region produces a periodically repeated optical power exchanges along the propagation. A light power was steered from one output channel to the other due to the change in the cladding layer (bio-material) refractive index, which affected the effective refractive index (phase-shift) of two modes through evanescent-wave. Waveguide analyses based on the rib optical waveguide dimensions were performed using various numerical computational software. Sensitivity values of 12~23 and 65~165 au/RIU, respectively for the width and length of 4 ㎛, and 3841.46 and 26250 ㎛ of the two-mode region corresponding to the refractive index range 1.36~1.43 and 1.398~1.41, respectively, were obtained.