Browse > Article
http://dx.doi.org/10.3807/JOSK.2007.11.1.001

Efficient Optical Intensity Modulator Based on the Electrically Tunable LiNbO3 Reflection Grating for Analog Fiber-Optic Links  

Jung I-Young Michelle (Department of Applied Physics, Hanyang University)
Shin Dong-Soo (Hanyoung Foreign Language High School)
Publication Information
Journal of the Optical Society of Korea / v.11, no.1, 2007 , pp. 1-5 More about this Journal
Abstract
We investigate the efficiency of an optical intensity modulator based on an electrically tunable $LiNbO_3$ reflection grating. Assuming a grating coupling coefficient and the waveguide propagation loss, waveguide length is varied to find its effect on the modulator slope efficiency and the device capacitance. With the low propagation loss of the $LiNbO_3$ waveguide, a very efficient optical intensity modulator can be achieved for a low frequency (${\sim}1GHz$) as long as the requirement for the grating coupling coefficient is satisfied.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 H. Kogelnik and C. V. Shank, 'Coupled-wave theory of distributed feedback lasers,' J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972   DOI
2 L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, 'Thermooptic planar polymer Bragg grating OADM's with broad tuning range,' IEEE Photon. Technol. Lett., vol. 11, no. 4, pp. 448-450, 1999   DOI   ScienceOn
3 L. Xia, X. Li, X. Chen, and S. Xie, 'A novel dispersion compensating fiber grating with a large chirp parameter and period sampled distribution,, vol. 227, no. 4/6, pp. 311-315, 2003   DOI   ScienceOn
4 Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, 'Electrooptic polymer modulators with 0.8 V half-wave voltage,' Appl. Phys. Lett., vol. 77, no. 1, pp. 1-3, 2000   DOI   ScienceOn
5 See, for example, E. Hecht, Optics, 4th ed., (Addison Wesley, Reading, MA), 2002
6 H. Kogelnik and C. V. Shank, 'Stimulated emission in a periodic structure,' Appl. Phys. Lett., vol. 18, no. 4, pp. 152-154, 1971   DOI
7 C. H. Cox, III., Analog Optical Links: Theory and Practice, (Cambridge University Press, New York, NY), 2004
8 D.-S. Shin, 'Investigation of optical intensity modulator using electrically tunable reflection grating,' J. Natural Science and Technology, vol. 7, pp. 23-27, 2004
9 D.-S. Shin, 'Optical intensity modulator based on the grating-corrugated electro-optic polymer waveguide,' J. Natural Science and Technology, vol. 8, pp. 33-42, 2005
10 See, for example, D. L. Lee, Electromagnetic Principles of Integrated Optics, (John Wiley & Sons, New York, NY), 1986
11 J.S. Wei, 'Distributed capacitance of planar electrodes in optic and acoustic surface wave devices,' IEEE J.Quantum Electron., vol. QE-13, no. 4, pp. 152-158, 1977   DOI
12 S.-H. Lee, S. M. Garner, V. Chuyanov, H. Zhang, W. H. Steier, F. Wang, L. R. Dalton, A. H. Udupa, and H. R. Fetterman, 'Optical intensity modulator based on a novel electrooptic polymer incorporating a high ${\mu}{\beta}$ chromophore,' IEEE J. Quantum Electron., vol. 36, no. 5, pp. 527-532, 2000   DOI   ScienceOn
13 W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, 'Low drive voltage, broad-band $LiNbO_{3}$ modulators with and without etched ridges,' J. Lightwave Technol., vol. 17, no. 2, pp. 2551-2555, 1999   DOI   ScienceOn
14 K. Noguchi, H. Miyazawa, and O. Mitomi, '$LiNbO_{3}$ high-speed modulator,' Technical Digest of CLEO/Pacific Rim '99, vol. 4, pp.1267-1268, 1999
15 C.-T. Lee, C.-T. Kuo, and H.-H. Lu, 'Dispersion compensation in externally modulated transmission system using chirped fiber grating,' Fiber and Integrated Optics, vol. 21, no. 4, pp. 269-276, 2002   DOI