Browse > Article
http://dx.doi.org/10.5369/JSST.2020.29.3.172

Design of Integrated-Optic Biosensor Based on the Evanescent-Field and Two-Horizontal Mode Power Coupling of Si3N4 Rib-Optical Waveguide  

Jung, Hongsik (Dept. of Electronic & Electrical Fusion Engineering, College of Science and Technology, Hongik University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.3, 2020 , pp. 172-179 More about this Journal
Abstract
We studied an integrated-optic biosensor configuration that operates at a wavelength of 0.63 ㎛ based on the evanescent-wave and two horizontal mode power coupling of Si3N4 rib-optical waveguides formed on a Si/SiO2/Si3N4/SiO2 multilayer thin films. The sensor consists of a single-mode input waveguide, followed by a two-mode section which acts as the sensing region, and a Y-branch output for separating the two output waveguides. The coupling between the two propagating modes in the sensing region produces a periodically repeated optical power exchanges along the propagation. A light power was steered from one output channel to the other due to the change in the cladding layer (bio-material) refractive index, which affected the effective refractive index (phase-shift) of two modes through evanescent-wave. Waveguide analyses based on the rib optical waveguide dimensions were performed using various numerical computational software. Sensitivity values of 12~23 and 65~165 au/RIU, respectively for the width and length of 4 ㎛, and 3841.46 and 26250 ㎛ of the two-mode region corresponding to the refractive index range 1.36~1.43 and 1.398~1.41, respectively, were obtained.
Keywords
Integrated-optic biosensor; Two horizontal mode power coupling; Evanescent-wave; Rib- optical waveguide; Effective refractive index; Sensitivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Breglio, G. Coppola, A. Cutolo, A. Irace, and M. Bellucci, "Temperature optical sensor based on a silicon bimodal Y branch," Proc. SPIE Vol. 4293, pp. 155-161, 2001.
2 A. Irace and G. Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express, Vol. 11, No. 22, pp. 2807-2812, Nov. 2003.   DOI
3 K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated-optical chemical sensors," J. Opt. Soc. Am. B, Vol. 6, No. 2, pp. 209-220, 1989.   DOI
4 F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, "A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon," Sens. Actuators B, Vol. 44, No. 1-3, pp. 350-355, 1997.   DOI
5 K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on- Insulator microring resonator for sensitive and label-free biosensing," Opt. Express, Vol. 15, No. 12, pp. 7610-7615, 2007.   DOI
6 C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron., Vol. 12, No. 1, pp. 134-142, 2006.   DOI
7 F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology, Vol. 14, No. 8, pp. 907-912, 2003.   DOI
8 A. Densmore, D. X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delage, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, "Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperatureindependent response," Opt. Lett., Vol. 33, No. 6, pp. 596-598, 2008.   DOI
9 K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, "Silicon Photonic Biosensors for Lab-on-a-Chip Applications," Adv. Opt. Technol., Vol. 2008, pp. 383927(1)-383927(6), 2008.
10 K. Zinoviev, A. B. Gonzalez-Guerrero, C. Dominguez, and L. M. Lechuga, "Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis," J. Lightwave Technol., Vol. 29, No. 13, pp. 1926-1930, 2011.   DOI
11 D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, K. E. Zinoviev, C. Dominguez, and L. M. Lechuga, "Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers," Lab Chip, Vol. 12, No. 11, pp. 1987-1994, 2012.   DOI
12 J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonator via atomic layer deposition," Opt. Express, Vol. 20, No. 25, pp. 27661- 27669, 2012.   DOI
13 Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, "Design and optimization of optical modulators based on graphene-on-silicon nitride micro-ring resonators," J. Optics. Vol. 19, No. 4, pp. 1-12, 2017.
14 A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, "Silicon and silicon nitride photonic circuits for spectroscopic sensing on-achip," Photon. Res. Vol. 3, No. 5, pp. B47-B59, 2015.   DOI
15 R. A. Soref, J. Schmidtchen, and K. Peterman, "Large single-mode rib waveguides in GeSi-Si and Si-on-$SiO_2$", IEEE J. Quantum Electron., Vol. 27, No. 8, pp. 1971-1974, 1991.   DOI
16 S. P. Pogossian, L. Vescan, and A. Vonsovici, "The singlemode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol., Vol. 16, No. 10, pp. 1851-1853, 1998.   DOI