DOI QR코드

DOI QR Code

Design of Integrated-Optic Biosensor Based on the Evanescent-Field and Two-Horizontal Mode Power Coupling of Si3N4 Rib-Optical Waveguide

Si3N4 립-광도파로의 두-수평모드 파워결합과 소산파 기반 집적광학 바이오센서 설계

  • Jung, Hongsik (Dept. of Electronic & Electrical Fusion Engineering, College of Science and Technology, Hongik University)
  • 정홍식 (홍익대학교 전자전기융합공학과)
  • Received : 2020.04.06
  • Accepted : 2020.04.18
  • Published : 2020.05.31

Abstract

We studied an integrated-optic biosensor configuration that operates at a wavelength of 0.63 ㎛ based on the evanescent-wave and two horizontal mode power coupling of Si3N4 rib-optical waveguides formed on a Si/SiO2/Si3N4/SiO2 multilayer thin films. The sensor consists of a single-mode input waveguide, followed by a two-mode section which acts as the sensing region, and a Y-branch output for separating the two output waveguides. The coupling between the two propagating modes in the sensing region produces a periodically repeated optical power exchanges along the propagation. A light power was steered from one output channel to the other due to the change in the cladding layer (bio-material) refractive index, which affected the effective refractive index (phase-shift) of two modes through evanescent-wave. Waveguide analyses based on the rib optical waveguide dimensions were performed using various numerical computational software. Sensitivity values of 12~23 and 65~165 au/RIU, respectively for the width and length of 4 ㎛, and 3841.46 and 26250 ㎛ of the two-mode region corresponding to the refractive index range 1.36~1.43 and 1.398~1.41, respectively, were obtained.

Keywords

References

  1. K. Tiefenthaler and W. Lukosz, "Sensitivity of grating couplers as integrated-optical chemical sensors," J. Opt. Soc. Am. B, Vol. 6, No. 2, pp. 209-220, 1989. https://doi.org/10.1364/JOSAB.6.000209
  2. F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, "A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon," Sens. Actuators B, Vol. 44, No. 1-3, pp. 350-355, 1997. https://doi.org/10.1016/S0925-4005(97)00226-8
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on- Insulator microring resonator for sensitive and label-free biosensing," Opt. Express, Vol. 15, No. 12, pp. 7610-7615, 2007. https://doi.org/10.1364/OE.15.007610
  4. C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron., Vol. 12, No. 1, pp. 134-142, 2006. https://doi.org/10.1109/JSTQE.2005.862945
  5. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology, Vol. 14, No. 8, pp. 907-912, 2003. https://doi.org/10.1088/0957-4484/14/8/312
  6. A. Densmore, D. X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delage, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, "Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperatureindependent response," Opt. Lett., Vol. 33, No. 6, pp. 596-598, 2008. https://doi.org/10.1364/OL.33.000596
  7. K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, "Silicon Photonic Biosensors for Lab-on-a-Chip Applications," Adv. Opt. Technol., Vol. 2008, pp. 383927(1)-383927(6), 2008.
  8. K. Zinoviev, A. B. Gonzalez-Guerrero, C. Dominguez, and L. M. Lechuga, "Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis," J. Lightwave Technol., Vol. 29, No. 13, pp. 1926-1930, 2011. https://doi.org/10.1109/JLT.2011.2150734
  9. D. Duval, A. B. Gonzalez-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernandez, K. E. Zinoviev, C. Dominguez, and L. M. Lechuga, "Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers," Lab Chip, Vol. 12, No. 11, pp. 1987-1994, 2012. https://doi.org/10.1039/c2lc40054e
  10. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonator via atomic layer deposition," Opt. Express, Vol. 20, No. 25, pp. 27661- 27669, 2012. https://doi.org/10.1364/OE.20.027661
  11. Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, "Design and optimization of optical modulators based on graphene-on-silicon nitride micro-ring resonators," J. Optics. Vol. 19, No. 4, pp. 1-12, 2017.
  12. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, "Silicon and silicon nitride photonic circuits for spectroscopic sensing on-achip," Photon. Res. Vol. 3, No. 5, pp. B47-B59, 2015. https://doi.org/10.1364/PRJ.3.000B47
  13. R. A. Soref, J. Schmidtchen, and K. Peterman, "Large single-mode rib waveguides in GeSi-Si and Si-on-$SiO_2$", IEEE J. Quantum Electron., Vol. 27, No. 8, pp. 1971-1974, 1991. https://doi.org/10.1109/3.83406
  14. S. P. Pogossian, L. Vescan, and A. Vonsovici, "The singlemode condition for semiconductor rib waveguides with large cross section," J. Lightwave Technol., Vol. 16, No. 10, pp. 1851-1853, 1998. https://doi.org/10.1109/50.721072
  15. G. Breglio, G. Coppola, A. Cutolo, A. Irace, and M. Bellucci, "Temperature optical sensor based on a silicon bimodal Y branch," Proc. SPIE Vol. 4293, pp. 155-161, 2001.
  16. A. Irace and G. Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express, Vol. 11, No. 22, pp. 2807-2812, Nov. 2003. https://doi.org/10.1364/OE.11.002807