• Title/Summary/Keyword: Optical Character Recognition

Search Result 184, Processing Time 0.026 seconds

A Study on the Improvement of Tesseract-based OCR Model Recognition Rate using Ontology (온톨로지를 이용한 tesseract 기반의 OCR 모델 인식률 향상에 관한 연구)

  • Hwang, Chi-gon;Yun, Dai Yeol;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.438-440
    • /
    • 2021
  • With the development of machine learning, artificial intelligence techniques are being applied in various fields. Among these fields, there is an OCR technique that converts characters in images into text. The tesseract developed by HP is one of those techniques. However, the recognition rate for recognizing characters in images is still low. To this end, we try to improve the conversion rate of the text of the image through the post-processing process that recognizes the context using the ontology.

  • PDF

Design and Implementation of OpenCV-based Inventory Management System to build Small and Medium Enterprise Smart Factory (중소기업 스마트공장 구축을 위한 OpenCV 기반 재고관리 시스템의 설계 및 구현)

  • Jang, Su-Hwan;Jeong, Jopil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.161-170
    • /
    • 2019
  • Multi-product mass production small and medium enterprise factories have a wide variety of products and a large number of products, wasting manpower and expenses for inventory management. In addition, there is no way to check the status of inventory in real time, and it is suffering economic damage due to excess inventory and shortage of stock. There are many ways to build a real-time data collection environment, but most of them are difficult to afford for small and medium-sized companies. Therefore, smart factories of small and medium enterprises are faced with difficult reality and it is hard to find appropriate countermeasures. In this paper, we implemented the contents of extension of existing inventory management method through character extraction on label with barcode and QR code, which are widely adopted as current product management technology, and evaluated the effect. Technically, through preprocessing using OpenCV for automatic recognition and classification of stock labels and barcodes, which is a method for managing input and output of existing products through computer image processing, and OCR (Optical Character Recognition) function of Google vision API. And it is designed to recognize the barcode through Zbar. We propose a method to manage inventory by real-time image recognition through Raspberry Pi without using expensive equipment.

A programmable Soc for Var ious Image Applications Based on Mobile Devices

  • Lee, Bongkyu
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.324-332
    • /
    • 2014
  • This paper presents a programmable System-On-a-chip for various embedded applications that need Neural Network computations. The system is fully implemented into Field-Programmable Gate Array (FPGA) based prototyping platform. The SoC consists of an embedded processor core and a reconfigurable hardware accelerator for neural computations. The performance of the SoC is evaluated using real image processing applications, such as optical character recognition (OCR) system.

A SoC Based on a Neural Network for Embedded Smart Applications (임베디드 스마트 응용을 위한 신경망기반 SoC)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2059-2063
    • /
    • 2009
  • This paper presents a programmable System-On-a-chip (SoC) for various embedded smart applications that need Neural Network computations. The system is fully implemented into a prototyping platform based on Field Programmable Gate Array (FPGA). The SoC consists of an embedded processor core and a reconfigurable hardware accelerator for neural computations. The performance of the SoC is evaluated using a real image processing application, an optical character recognition (OCR) system.

Popular Object detection algorithms in deep learning (딥러닝을 이용한 객체 검출 알고리즘)

  • Kang, Dongyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.427-430
    • /
    • 2019
  • Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.

Proposal Record Automation Service Based on AI by Using OCR and Pattern Analysis Algorithm (OCR과 패턴분석 알고리즘을 활용한 인공지능 기반 기록 자동화 서비스 제안)

  • Hwang, Yun-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.530-532
    • /
    • 2019
  • 제안하는 서비스는 OCR(Optical Character Recognition, 광학문자인식)과 딥러닝 패턴분석 알고리즘을 활용하여 문서를 효율적으로 관리하는 서비스로 필기를 많이 하는 사용자를 위한 기능을 제공한다. 최근 다양한 분야에서의 머신러닝 기반의 OCR의 활용이 증가했지만 기존의 애플리케이션은 패턴 분석 알고리즘과 통계 기반의 OCR을 혼합하여 사용하기 때문에 필기체에 대한 인식률이 높지 않다. 이에 본 논문에서는 OCR과 패턴분석 알고리즘을 활용하여 필기체에 대한 높은 인식률을 제공하는 서비스를 제안한다.

An Arabic Script Recognition System

  • Alginahi, Yasser M.;Mudassar, Mohammed;Nomani Kabir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3701-3720
    • /
    • 2015
  • A system for the recognition of machine printed Arabic script is proposed. The Arabic script is shared by three languages i.e., Arabic, Urdu and Farsi. The three languages have a descent amount of vocabulary in common, thus compounding the problems for identification. Therefore, in an ideal scenario not only the script has to be differentiated from other scripts but also the language of the script has to be recognized. The recognition process involves the segregation of Arabic scripted documents from Latin, Han and other scripted documents using horizontal and vertical projection profiles, and the identification of the language. Identification mainly involves extracting connected components, which are subjected to Principle Component Analysis (PCA) transformation for extracting uncorrelated features. Later the traditional K-Nearest Neighbours (KNN) algorithm is used for recognition. Experiments were carried out by varying the number of principal components and connected components to be extracted per document to find a combination of both that would give the optimal accuracy. An accuracy of 100% is achieved for connected components >=18 and Principal components equals to 15. This proposed system would play a vital role in automatic archiving of multilingual documents and the selection of the appropriate Arabic script in multi lingual Optical Character Recognition (OCR) systems.

Retrieving Information from Korean OCR Text Database (문자 인식에 의해 구축된 한글 문서 데이터베이스에 대한 정보 검색)

  • Lee, Jun-Ho;Lee, Chung-Sik;Han, Seon-Hwa;Kim, Jin-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.833-841
    • /
    • 1999
  • The texts constructed with Optical Character Recognition(OCR) contain more errors than those constructed with keyboard typing. Therefore, in order to retrieve useful information from OCR texts, we need to develop an effective automatic indexing method. In this paer, we investigate automatic indexing methods that can retrieve information effectively from Korean OCR text database with the character-level recognition ratio of 90%. Experimental result shows that 2-gram indexing provides similar retrieval effectiveness of morpheme-based indexing for the Korean OCR text database.

  • PDF

A Study on Detecting Personal Information from Image Files (이미지파일에 포함된 개인정보추출에 관한 연구)

  • Lee, Minsuk;Kim, Sukhyeon;Yoon, Jiae;Won, Yoojae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.209-212
    • /
    • 2017
  • 최근 정보통신기술의 비약적 발전에 따라 문서 제작 과정 또한 디지털 방식의 형태가 주를 이루게 되었다. 하지만 이와 더불어 문서를 통한 개인 정보 유출의 문제 또한 대두되게 되었다. 본 논문에서는 이미지 형식의 문서의 유출 방지를 위해 광학문자인식(OCR)을 활용한 문자인식 기능과 개인정보 검출 기능을 통합적으로 수행 한하여 기존 OCR엔진과의 차별점을 두었다. 또한 원하는 경로의 파일 탐색을 가능하도록 하고, 선택한 경로에 저장되어 있는 이미지파일 내의 검출 문자들을 정규표현식을 사용해 특정한 개인정보 패턴과 매칭하여 문서 내 포함된 개인정보를 반환하여 출력한다. 이러한 개인정보 검출 결과 중요 개인정보가 포함된 파일을 사용자에게 별도로 통보하도록 한다. 따라서 본 논문에서는 기존의 개인정보 검출 과정의 번거로움을 극복하여 사용자의 편의 향상과 더불어 문서를 통한 개인정보의 유출을 사전에 방지 할 수 있도록 하였다.

  • PDF

Character Segmentation with Segmentation Cost in Optical Character Recognition (문자 인식에서 분할 비용에 따른 문자 분할 연구)

  • Jung Minchul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.179-181
    • /
    • 2004
  • 인쇄체 문자 인식에서 접합 문자는 주요한 에러 발생의 원인이다. 본 논문에서는 접합 문자를 분할하기 위해 두 개의 분할 비용을 정의한다. 첫째, 절단 비용은 한 패턴을 분할하는 데 얼마나 많은 블랙픽셀이 분리되어야 하는가이다. 둘째, 접선 비용은 분할선이 얼마나 많은 블랙 픽셀과 화이트 픽셀사이를 지나가는가이다. 폰트 분류기는 접합 문자의 후보 문자를 제공한다. 후보 문자의 문자 폭은 접합 문자를 분리하기 위한 기준선을 제공하며, 그 기준선 부근의 픽셀들이 분할 가능 영역을 나타낸다. 절단 비용의 최소값과 접선 비용의 최대값이 되는 지점이 최종적으로 접합 문자를 분할하는 위치이다. 이렇게 정의된 절단 비용과 접선 비용을 가지고 접합 문자를 분할하면 보다 정확한 문자 분할을 하여 문자 인식에서 에러 발생을 줄일 수 있다.

  • PDF