
Journal of Korea Multimedia Society Vol. 17, No. 3, March 2014(pp. 324-332)

http://dx.doi.org/10.9717/kmms.2014.17.3.324

A programmable Soc for Var ious Image Applications

Based on Mobile Devices

Bongkyu Lee†

ABSTRACT

This paper presents a programmable System-On-a-chip for various embedded applications that need

Neural Network computations. The system is fully implemented into Field-Programmable Gate Array

(FPGA) based prototyping platform. The SoC consists of an embedded processor core and a reconfig-

urable hardware accelerator for neural computations. The performance of the SoC is evaluated using

real image processing applications, such as optical character recognition (OCR) system.

Key words: SoC, FPGA, MLP, hardware accelerator

※ Corresponding Author : Bongkyu Lee, Address :

(690-756) Dept. of Computers & Statistics, Jeju Nat‘l

Univ., 66 Jeju Daeahak-ro, Jeju Tel : +82-64-754-3593,

FAX : +82-64-725-2579, E-mail : bklee@jejunu.ac.kr

Receipt date : Dec. 24, 2013, Revision date : Jan. 29, 2014

Approval date : Feb. 13, 2014
†Dept. of computer science and Statistics, Cheju National

University

※ This research was supported by the 2013 scientific

promotion program funded by Jeju National University.

1. INTRODUCTION

The demand for ‘smart’ devices in consumer

electronics is increasing. This is motivated by the

wide spread use of low-cost embedded electronics

in various environments [1]. Also, it is desirable

that electronic devices are capable of sensing and

understanding their surroundings and adapting

their services according to the context. Artificial

Neural Networks (ANN) have been spot-lighted

for this purpose, primary due to their wide range

of applicability [2]. The Multilayer Perceptron

(MLP) is the most frequently used ANN due to its

ability to model non-linear systems and establish

non-linear decision boundaries in classification

problems such as optical character recognition

(OCR), data mining and image processing/ recog-

nition [2].

However, since MLP requires extremely high

throughput, this computational complexity is high-

ly undesirable from real time operations for em-

bedded devices which have constraints in their

processing capabilities. An attractive solution to

this is to design a dedicated hardware for MLP ac-

celeration [3].

Hardware implementation of MLP has been a

hot topic for many years, mainly due to accuracy,

required space, and processing speed. Various

hardware implementations for MLP were success-

ful using entire hardware implementation such as

ASIC design method [3-5]. However, full hardware

implementation is not effective in terms of cost and

implementation complexity. Recently, the reconfig-

urable computing paradigm is a topic of active

research. Utilizing the capability of reconfigurable

devices, the implementation of MLP structures in

FPGA has been wide spreaded [6].

Designers have used FPGA in board–level de-

signs for a long while. To create high performance,

versatile platforms, some architectures start in-

corporating logic operations and interconnections

that can be reconfigured during run time. Adding

reconfigurable logic to the SoC provides flexibility

for changing functionality after fabrication. Com-

pared to programmable processors, these archi-

tectures offer the potential to achieve higher per-

325A programmable Soc for Various Image Applications Based on Mobile Devices

formance and power-efficiency with greater flexi-

bility [7]. To boost the impact of reconfigurable

SoCs, some research work has been done to extract

parallelism form the applications/algorithms and

map the parallelism into the reconfigurable archi-

tecture efficiently [8].

Although a few hardware implementations us-

ing FPGA have been proposed thus far [9-11], a

hardware implementation of an MLP still remains

to be a challenging problem for embedded applica-

tions. Since different pre-processing and post-

processing techniques can be combined with an

MLP in real applications, the system should be re-

configured according to applications. Also, there

have been strong needs for hardware design which

can accommodate variations in network structure

without hardware redesign [12]. These problems

can be overcome by software/hardware co-design

method. This method is carried out by analyzing

the timing of the different portions of the algorithm

and implementing the time extensive parts on

hardware [13]. A SoC that has a microprocessor

and related configurable hardware accelerators can

deliver large speedups, while keeping the flexibility

of software models.

In this paper, we implement a novel MLP-SoC

architecture for smart applications into embedded

devices. For testing and debugging the target ar-

chitecture in the register transfer level (RTL) effi-

ciently, an FPGA based prototyping platform is de-

signed and implemented. The implemented SoC

can accommodate variations in network structures

and applications without hardware modification.

To evaluate the SoC, an OCR system is built on

the prototyping platform where the SoC is

implemented. The experimental result proves the

effectiveness of the SoC in terms of both speed and

recognition rate.

2. ISSUES IN THE IMPLEMENTATION

OF MLP-SOC

Our goal is to implement a MLP-SoC which can

be used for embedding processes. During the

MLP-SoC implementation, a prototyping platform,

data representation and precision and hardware

components play important roles in design deci-

sions.

2.1 The prototyping platform

As the complexity of SoC design is constantly

growing and reusable IP libraries are wealthy, the

main design issue shifts to the verification method

to handle the complex SoC system easily. Thus a

low-cost co-verification solution consisting of a

hardware emulator based on FPGA and an em-

bedded processor is introduced. It provides a good

visibility for the internal signals of the system de-

sign mapped in the emulator. It is useful to verify

the complex SoC design steps [14].

To design and verification of SoC, FPGA-based

prototyping platform has become popular in co-

verification and rapid prototyping [15]. Mapping

the entire design of the target SoC into an FPGA

gives an accurate and fast representation. Some

basic components, including CPU, bus system and

associated interconnection blocks, are selected for

designing the platform. LEON 2 [16] is selected for

the programmable processor and implemented into

the FPGA. For the communication between in-

ternal components, on-chip AHB/APB AMBA bus

system is also implemented into FPGA.

In addition to the FPGA chip, the platform offers

the SDRAM-based memory (128 Mbytes) and the

flash-based storage (8 Mbytes). SDRAM-based

memory unit is used for storing external data,

while flash-based storage is used for storing soft-

ware blocks. Fig. 1 shows the implemented proto-

typing platform having compact size of 112×129

mm.

2.2 MLP for image processing/recognition

A MLP for image processing/recognition appli-

cation consists of processing elements arranged in

layers. Typically, it requires three or more layers

326 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 17, NO. 3, MARCH 2014

Fig. 1 The prototyping platform.

Table 1. Target hardware constraints

Parameters Values

Maximum # of input nodes 1,000

Maximum # of hidden nodes and
layers

128/2

Weight precision 12 bits (signed)

Activation function output
precision

9 bits (signed)

Input data range 0～255

Output range -255～255

of processing nodes: an input layer, one or more

hidden layers, and an output layer. Every process-

ing node in one particular layer is fully or partially

connected to every node in the layers above and

below it. The weighted connections define the be-

havior of the network and are adjusted during

training through a supervised training algorithm

called back-propagation [2].

In the recognition, an input vector is presented

to the input layer. For successive layers, the input

to each node is the sum of the scalar products of

the incoming vector components with their re-

spective weighted connections:

sumi =∑j wij outj (1)

where wij is the weight connecting node j to node

i and outj is the output from node j.

The output of a node i is outi = f (sumi), which

is then sent to all nodes in the next layer. This

continues through all the layers of the network un-

til the output layer is reached and the output vector

is computed, where f denotes the activation func-

tion of each node. A sigmoid or a hyperbolic tan-

gent function is frequently used. Table 1 shows the

hardware constraints for the target SoC.

Since a floating-point representation of data

(weights, inputs, outputs) in a neural network may

still be impractical for embedded hardware, we use

fixed point representations for weights, inputs and

outputs. Unsigned 8 bits are used for represent in-

put values, while signed 9 bits are used for output

precisions since some activation functions produce

negative outputs. Weights are stored in the weight

table using signed 12 bits fixed-point representa-

tions. The direct implementation of a specific acti-

vation function as hardware does not appropriate

to our work since the target hardware should be

reconfigurable. Thus, we use a lookup table storing

output values for define activation functions. By

using this method, a few different activation func-

tions can be implemented with fixed hardware.

3. THE MLP-SOC

Fig. 2 shows the top level block description of

the MLP-SoC. It comprises the LEON 2 core (main

processor), MLP co-processor (hardware accel-

erator), memory controller, camera interface and

bus system. All of these components are integrated

into FPGA of the prototyping platform.

LEON 2 is a 32-bit RISC processor compliant

with the SPARC V8 architecture. It is highly con-

figurable and thus very suitable for SoC. Also,

software written in C language can be directly

executed under the LEON 2 core using cross- tool

chain [16]. We implement LEON 2 core (shown in

Fig. 3, dotted box) using open VHDL source into

FPGA of the prototyping platform. The camera in-

terface controller and the I
2
C circuit are capable of

handling a few image sensors with their fixed

logics.

3.1 MLP computation co-processor

Fig. 4 shows the architecture of the implemented

327A programmable Soc for Various Image Applications Based on Mobile Devices

Fig. 2. Architectural overview of the MLP-SoC.

Fig. 3. Block diagram of the standard LEON 2 processor.

MLP computation co-processor that is dedicated

to the basic computations of neurons. As seen in

the figure, the MLP computation co-processor

consists of two major parts - Host interface block

for memory accesses and bus interface and MLP

block for neural computing.

Host interface block is responsible for bus inter-

faces between MLP computation co-processor and

other controllers. It consists of two direct memory

access (DMA) units, source DMA and destination

DMA. The source DMA block retrieves an input

from the external memory and stores it into input

buffers (2K X8 bits). Two buffers are prepared in

order to be able to process one input, while another

is being buffered for the next computation. The

block sends the signal to the MLP block in order

to start the computation task for the current input.

When the computation task completes, the destina-

tion DMA block stores the generated output from

the MLP block into the external memory. This data

stream is useful when the size and the number of

inputs are large.

In order to accommodate the constraints de-

scribed in Table 1, the MLP block consists of sto-

rages and computation module. There are three

different static memories: the function table, the

328 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 17, NO. 3, MARCH 2014

Fig. 4. Architectural overview of the MLP computation co-processor.

SAT: Saturation, TRN: Truncation, Act. Table : Activation function table

Fig. 5. The RTL diagram of the computation modulel

hidden node register file and the weight table. An

activation function, such as sigmoid or hyper-tan-

gent function, can be implemented in the activation

table without modifying hardware. The weight ta-

ble consists of 128K * 19 bits, 12 bits are used for

saving weight values and 7 bits are used for saving

hidden node index. Hidden nodes register file con-

sists of 128 * 24 bits for storing transient results

of hidden/output nodes.

Fig. 5 shows the RTL diagram of the computa-

tion module. The computation module obtains in-

puts from an input buffer and computes activation

values of all nodes of successive layers until the

values of output nodes are computed. Then, it

sends the output values to host interface block for

saving them into SRAM-based memory. Fig. 5 al-

so shows the precisions of the implemented logics.

The implemented MLP-SoC is fully synthesized

by VHDL model and transferred into the FPGA

(XILINX X2CV8000) of the prototyping platform.

329A programmable Soc for Various Image Applications Based on Mobile Devices

Fig. 6. The processing flow of the implemented OCR system.

Table 2. Configurations of MLPs

Parameters Version_1 MLP Version_2 MLP

Input/hidden/output 720/24/26 720/32/26

Activation function Hyperbolic tangent Sigmoid

Connection type Fully Partially

Learning rule Back-propagation Back-propagation

Recognition rate 94% 98%

This MLP-SoC architecture provides fast process-

ing of neural connections and transfer functions,

and is well suited for MLP-type neural models.

The operational clock rate of the FPGA is 30MHz.

This clock source is fed into all components that

are implemented on hardware. In the next section,

we will verify the effectiveness of our reconfig-

urable architecture using a real application, build-

ing an OCR system onto the implemented archi-

tecture.

4. APPLICATIONEXAMPLE: OCRSYSTEM

OCR is the process by which a computer maps

a digitized character image to text. This system

is the base for many different types of embedded

applications, such as portable translators, elec-

tronic dictionaries and personal data assistants

[18]. The algorithm of the target OCR system con-

sists of three main stages [19] as shown in the Fig.

6. First, an image is acquired by the MICRON

MT9V112 image sensor [20] connected to camera

interface. Second, preprocessing step is performed

in order to segment the image into individual char-

acters using histogram-based method. Extracted

characters are converted into binary-valued im-

ages (0 or 255) [21]. Then the normalization for

skew and size variations is performed to obtain

30X24 (pixels) sized actual input images of the

MLP.

Since a structure of a neural network, such as

a number of nodes, an activation function, can be

varied for a specific application for the better per-

formance, a SoC for MLPs should accept these

variations. To show the reconfigurable property of

the MLP_SoC, we try to build two MLPs onto the

same architecture. Table 3 shows configurations

of the implemented MLPs. We successfully imple-

ment each MLP into the FPGA of the prototyping

platform independently without any modifications

of the existing hardware. The training for each

MLP is conducted onto the separated desktop com-

puter with the same learning data set (English al-

phabets a-z and A–Z, Times New Roman). Using

330 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 17, NO. 3, MARCH 2014

Table 3. Speed of each processing module for Reconfigurable OCR system

Algorithm stage Processing mode Required time

Segmentation Software on LEON2 690 msec

Binary and Normalization Software on LEON2 1,240 msec

Neural network Hardware 3,980 msec

Decision and save Software on LEON2 120 msec

Total time 6,030 msec

the trained weights, recognition experiments are

performed with three 320X 240 (pixels) sized docu-

ment images which have 730 characters total. The

OCR systems recognize 686 (version_1) and 719

(version_2) characters correctly, thus the recog-

nition rates are 94% (version_1) and 98% (version_2).

The other important issue of the evaluation for

the MLP-SoC is the recognition speed. We check

the required time of each module of the OCR sys-

tem with version_2 MLP for recognizing one

320X240 (pixels) document which contains 260

characters. Table 4 shows the required times of all

modules for the task. The OCR system can process

nearly 43 characters per second. The neural com-

putation module requires 3.9, while the software

implementation of the target MLP requires 869

seconds under LEON2. This result is mainly due

to the MLP computation co-processor that speed

up the neural computing 223 times compared to the

software implementation. Since almost commercial

software OCR systems are implemented on servers

or desktop computers which have higher hardware

capabilities such as powerful CPUs, they do not re-

quire a large amount of processing times. However

wearable/mobile devices have constraints in their

processing capabilities because of costs and power

consumptions. Thus the hardware acceleration is

the best solution to implement intelligence tasks

into hardware constrained devices. From the ex-

periments, we conclude that the implemented

MLP_SoC can be used to build smart embedded

devices capable of various image processing

applications.

5. CONCLUSION

In this paper, we design and implement the ar-

chitecture of a MLP-SoC suitable for small-sized

smart devices. The implemented SoC is tested and

verified in the RTL using the FPGA-based proto-

typing platform. Without modifying the existing

hardware, we can build two application systems on

the designed architecture successfully by re-

configuring the SoC. The example shows that the

MLP-SoC can be effectively used for various mo-

bile/wearable devices which need intelligence

capability. We are in the process of the chip fab-

rication for the implemented architecture.

REFERENCE

[1] A. Pentland and T. Choudhury, “Face

Recognition for Smart Environments,” IEEE

Computer, Vol. 33, No. 2, pp. 50-55, 2000.

[2] J.M. Zurada, Introduction to Artificial Neural

Systems, PWS Publishing Company, 1992.

New Jersey.

[3] T. Schoenauer, A. Jahnke, U. Roth, and H.

Klar, “Digital Neurohardware: Principles and

Perspectives,” Neuronal Networks in Appli-

cations, pp. 101-106, Vol. 2, No. 20, 1998.

[4] K. Mathia, J. Clark, B. Colbert, and R. Saeks,

“Benchmarking and MIMD Neural Network

Processor,” WCNN’96, pp. 1203-1210, 1996.

[5] T. Theocharides, G. Link, N. Vijaykrishnan,

M.J. Irwin, and W. Wolf, “Embedded

Hardware Face Detection,” Proc. the 17th

International Conference on VLSI Design, pp.

331A programmable Soc for Various Image Applications Based on Mobile Devices

569-572, 2004.

[6] M. Brogatti, F. Lertora, B. Foret, and L. Cali,

“A Reconfigurable System Featuring Dynam-

ically Extensible Embedded Microprocessor,

FPGA, and Customizable I/O”, IEEE Journal

of Solid-State Circuits, Vol. 38, Issue 3, pp.

521-529, 2003.

[7] T.H. Tsai, Y.C. Yang, and C.N. Liu, “A

Hardware/Software Co-Design of MP3 Audio

Decoder,” The Journal of VLSI Signal P ro-

cessing Systems for signal, Image and Video

Technology, Vol. 41, Issue 1, pp. 111-127, 2005.

[8] M. Nahvi and A. Ivanov, “Indirect Test archi-

tecture for SoC Testing,” IEEE Transactions

on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 23, Issue 7, pp.

1128-1142, 2004.

[9] E.M. Oritigosa, A. Canas, E. Ros, P.M.

Ortigosa, S. Mota, and J. Diaz, “Hardware

Dscription of Multi-Layer Perceptrons with

Different Abstraction Levels,” Microproces-

sors and Microsystems, Vol. 30, Issue 7, pp.

435-444, 2006.

[10] S. Vitabile, V. Conti, F. Gennaro, and F.

Sorbello, “Efficient MLP Digital Implementa-

tion on FPGA,” Proc. the 8th Euromicro

Conference on DSD, pp. 124-129, 2005.

[11] A. Rosado-Munoz, E. Soria-Olivas, L. Gomez-

Chova, and J.V. Frances, “An IP Core and GUI

Implementing Multilayer Perceptron with a

Fuzzy Activation Function on Configurable

Logic Devices,” Journal of Universal Compu-

ter Science, Vol. 14, No. 10, pp. 1678-1694,

2008.

[12] M. Pormann, M. Franzmeier, H. Kalte, U.

Witkowski, and U. Ruckert, “A Reconfigur-

able SOM Hardware Accelerator,” P roc. the

European Symposium on Artificial Neural

Networks Bruges(Belgium), pp. 337-342, 2002.

[13] M.S. Islam, M.S. Beg, M.S. Bhuyan, and M.

Othman, “Design and Implementation of

Discrete Cosine Transform Chip for Digital

Comsumer Products,” IEEE Transaction on

Consumer Electronics, Vol. 52, No. 3, pp. 998-

1003, 2006.

[14] J.H. Lee and S.C. Kim, “Analysis of

Verification Methodologies based on a SoC

Platform Design,” International Journal of

Contents, Vol. 7, Issue 1, pp. 23-28, 2011.

[15] P.G.D. Valle, D. Atienza, G. Paci, and F.

Poletti, “Application of FPGA Emulation to

SoC Floorplan and Packaging Exploration,”

Proc. the XXII Conference on Design of

Circuits and Integrated System, pp. 236-240,

2007.

[16] LEON2 Processor User’s Manual, http://www.

gaisler.com, 2004

[17] S.M. Shon, S.H. Yang, S.W. Kim, K.H. Baek,

and W.H. Paik, “Soc Design of an Auto Focus

Driving Image Signal Processor for Mobile

Camera Applications,” IEEE Transactions on

Consumer Electronics, Vol. 52, Issue 1, pp.

10-16, 2006.

[18] H. Nakajima, Y. Matsuo, M. Nagata, and K.

Saito, “Portable Translator Capable of Recog-

nizing Characters on Signboard and Menu

Captured by Built-In Camera,” Proc. the ACL

Interactive Poster and Demonstration Sessions,

pp. 61-64, 2005.

[19] B. Lee, Y. Cho, and S. Cho, “Translation, Scale

and Rotation Invariant Pattern Recognition

using PCA and Reduced Second Order Neural

Network” Neural, Parallel & Scientific

Computation, Vol. 3, Issue 3, pp. 417-429,

1995.

[20] MT9V112 Manual, http://www.micron.com,

2005

[21] M.Y. Na, H. J. Kim and T. Y. Kim, “An

Illumination and background-Robust Hand

Image Segmentation Method based on

Dynamic Threshod Values,” Journal of Korea

Multimedia Society, Vol. 14, No. 5, pp. 607-

613, 2011.

332 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 17, NO. 3, MARCH 2014

Bongkyu Lee

He received the Ph.D degree

from the Department of com-

puter engineering, Seoul Natio-

nal University in 1995. Since

1996, he has been a professor at

the Jeju national university. His

interesting research fields are in

Neural Networks, image processing and Augmented

Reality.

