• 제목/요약/키워드: Operator splitting method

검색결과 35건 처리시간 0.019초

부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형 (Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow)

  • 김대근;서일원
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

단일 균열암반에서 핵종/콜로이드 복합이동에 대한 수치모델 개발 (Development of the Numerical Model for Complex Transport of Radionuclide and Colloid in the Single Fractured Rock)

  • 이상화;김정우;정종태
    • 방사성폐기물학회지
    • /
    • 제10권4호
    • /
    • pp.237-246
    • /
    • 2012
  • 본 연구에서는 콜로이드와 핵종의 복합이동에 관한 수치모델을 개발하였다. 콜로이드와 핵종의 반응-이동 지배방정식을 풀기 위하여 Operator Splitting Method 중 Strang의 분리 SNI 방식을 수치해석 방법으로 채택하였고 이는 MATLAB을 이용하여 코드화 되었다. 개발된 수치모델은 용질의 이동 및 분산만을 고려한 해석해를 통한 검증과정에서 피어슨 상관계수의 제곱값($r^2$)이 0.99 이상으로 나타나 모델의 정확성이 입증되었다.

AN EXPLICIT NUMERICAL ALGORITHM FOR SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS USING GAUSSIAN FILTER

  • KIM, HYUNDONG;LEE, CHAEYOUNG;LEE, JAEHYUN;KIM, JAEYEON;YU, TAEYOUNG;CHUNG, GENE;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권1호
    • /
    • pp.31-38
    • /
    • 2019
  • We present an explicit numerical algorithm for surface reconstruction from unorganized points using the Gaussian filter. We construct a surface from unorganized points and solve the modified heat equation coupled with a fidelity term which keeps the given points. We apply the operator splitting method. First, instead of solving the diffusion term, we use the Gaussian filter which has the effect of diffusion. Next, we solve the fidelity term by using the fully implicit scheme. To investigate the proposed algorithm, we perform computational experiments and observe good results.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

사각형 유한요소망의 자동생성 (Automatic Mesh Generation with Quadrilateral Finite Elements)

  • 채수원;신보성;민중기
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2995-3006
    • /
    • 1993
  • An automatic mesh generation scheme has been developed for finite element analysis with two-dimensional, quadrilateral elements. The basic strategies of the method are to transform the analysis domain into loops with key nodes and the loops are recursively subdivided into subloops with the use of best split lines. Finally by using the basic loop operators, the meshes are completed. In this algorithm an eight-node loop operator is proposed, which is useful in the area where the change of element size is large and the splitting criteria for subdividing the loops have also been modified to the existing algorithms. Lines, arcs, and cubic spline curves are used to define the boundaries of analysis domain. Sample meshes for several geometries are presented to demonstrate the robustness of the algorithm.

Coherent Control of Autler-Townes Splitting in Photoelectron Spectroscopy: The Effect of Laser Intensity and Laser Envelope

  • Qin, Chaochao;Zhai, Hongsheng;Zhang, Xianzhou;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3294-3298
    • /
    • 2014
  • We theoretically investigated the coherent control of Autler-Townes splitting in photoelectron spectroscopy of K2 molecule within an ultrafast laser pulse by solving the time-dependent Schrodinger equation using a quantum wave packet method. It was theoretically shown that we can manipulate the splitting of photoelectron spectroscopy by altering the laser intensity. Furthermore, it was found that the percentages of each peak in photoelectron spectroscopy can be controlled by changing the envelope of the laser pulse.

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

A FAST AND ACCURATE NUMERICAL METHOD FOR MEDICAL IMAGE SEGMENTATION

  • Li, Yibao;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권4호
    • /
    • pp.201-210
    • /
    • 2010
  • We propose a new robust and accurate method for the numerical solution of medical image segmentation. The modified Allen-Cahn equation is used to model the boundaries of the image regions. Its numerical algorithm is based on operator splitting techniques. In the first step of the splitting scheme, we implicitly solve the heat equation with the variable diffusive coefficient and a source term. Then, in the second step, using a closed-form solution for the nonlinear equation, we get an analytic solution. We overcome the time step constraint associated with most numerical implementations of geometric active contours. We demonstrate performance of the proposed image segmentation algorithm on several artificial as well as real image examples.

TVD기법을 이용한 가스 분무 공정의 유동장 해석 (Numerical analysis of a flow field in gas atomization process using a TVD scheme)

  • 심은보
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.131-136
    • /
    • 1996
  • The numerical method for the flow field of a gas atomization process is presented. For the analysis of the compressible supersonic jet flow of a gas. an axisymmetric Navier-Stokes equations are solved using a LU-factored upwind method. The MUSCL type TVD scheme is used for the discretization of inviscid flux, whereas Steger-Warming splitting and LU factorization is applied to the implicit operator. For the validation of the present method, we computed the flow field around the simple gas atomizer proposed by Issac. The numerical results has shown excellent agreement with the experimental data.

  • PDF

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • 제27권5호
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.