• Title/Summary/Keyword: Operating Pressure

Search Result 2,518, Processing Time 0.028 seconds

An Investigation on Operating Characteristics of the Closed Cycle System Using High Pressure Diesel Engine (고압 디젤엔진을 이용한 폐회로 시스템의 운전특성에 관한 고찰)

  • 김인교;박신배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • The closed cycle diesel system is operated in closed circuit system where there is non air breathing with working fluid consists of combination of oxygen, argon and recycled exhaust gas far obtaining underwater or underground power sources. Experimental apparatus using the MTU8V183SE92 high pressurized engine adapted for closed cycle running, capable of operating at the system pressure of maximum 5 bar is constructed with ACAP as data acquisition system in order to operate equally in the open cycle in surface or the closed cycle in submerged conditions. The general features and the characteristics of combustion of HP(high pressure) diesel engine, specially designed and manufactured only for CCDE, are investigated. The test results of performance of HP diesel engine in closed cycle system are presented with respect to power and boost pressure and compared with those of low pressure diesel engine. The oxygen concentration and specific heat ratio are investigated with its deviation

An Accelerated Degradation Test of a Electronics Appliance Compressor (전자제품용 컴프레서의 가속열화시험에 관한 연구)

  • Lee, Hoo-Jin;Yun, Won-Young
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this paper, an accelerated degradation test procedure for an electronic appliance compressor is proposed. We investigate the amount of wear of the compressor and consider several factors as accelerating factors. Finally we select the operating pressure as a main accelerating factor. The test condition of accelerated degradation test is determined. The modified accelerating test reduces the test time in design phase by using the suggested accelerating factor.

The effect of addendum modification on bearing load in marine reduction gears (박용함속치차장치에서 전위가 베어링하중에 미치는 영향)

  • 민우홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 1984
  • In the reduction gears for marine propulsion engine such as turbine or high speed diesel engine, the standard involute double helical gears are generally used. However the addendum modification gear can be used in the reduction gear as it has flexibility for gear design on the tooth strength, scoring and operating noise. In this case, the determination of gear shaft bearing load is difficult by the alternation of operating pressure angle. In this paper, the formulas of bearing load according to the arrangements of the reduction gears are derived and the diagrams of operating pressure angle according to the modification coefficient are presented.

  • PDF

Operating Characteristics of Serially Connected Centrifugal Blowers Used for Automated Vacuum Waste Collection System (생활폐기물 자동집하시설용 다단직렬연결 원심블로어 운전특성)

  • Jang, Choon-Man;Lee, Jong-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.40-46
    • /
    • 2014
  • This paper describes blower performance characteristics of a automated vacuum waste collection system. Blowers serially connected to six or seven centrifugal blowers are evaluated by experimental measurements to understand blower performances according to blower numbers operated. Two different blowers and duct diameters connected to the main blowers are considered. Data acquisition system is introduced to measure pressure and pressure difference at the main duct simultaneously, which is connected to several blowers serially. A auxiliary blower, which is installed between a filter room and an air deodorizing apparatus, is also added to simulate its performance effect on the main blower. Throughout the experimental measurements of the blower system, it is found that pressure and inlet velocity at the upstream of a blower increase 3.7 and 2.4 times separately by increasing the operating blower numbers from one to seven. It is noted that blower efficiency and pressure measured at the system vary according to the distance between a air intake and a blower system. Auxiliary blower is effective to increase blower inlet suction pressure, while total energy consumption is increased relatively.

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II) (전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로-)

  • 배기서;이태상;노덕길;홍영기
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray (고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine (선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

Aging Characteristics of Low Pressure LPG Regulators for Domestic Use (가정용 LPG 저압조정기의 경년특성에 관한 연구)

  • Kim Young-Gyu;Kwon Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 1999
  • Experimental works were carried out to evaluate how the lapse of time affects the performance characteristics and the service life of low pressure LPG regulators for domestic use. Experimental results showed that the operating pressure of safety devices deviated from the opening pressure value and the closing pressure value from just 1 year after service, and the operating pressure of regulators used for 7${\~}$8 years notably deviated from the reference value of the adjusting pressure and the closing pressure. And the material properties of springs and diaphragms deteriorated after 5${\~}$6 years of service. Thus, it is estimated that low pressure LPG regulators have approximately 6 years of service life. However, it is highly recommended that regulators exceeding 5 years of service should be replaced for the safety of consumer and accident prevention even if they are operating normally.

  • PDF

Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.251-257
    • /
    • 2020
  • This study was performed to verify the possibility of nitrification and denitrification in a single reactor. In batch type experiment, optimal point of experimental conditions could be found by performing the experiments. When supply location of microbubbles was located at half of width of the aeration tank and operating pressure of 0.5 bar, it was possible for zones in the aeration tank to be separated into anoxic and aerobic by controlling air suction rate according to operating pressure of the generator. To be specific, the concentration of dissolved oxygen (DO) in zone 1 and 2 of the aeration tank could be maintained as less than 0.5 mg/L. Also, in the case of concentration of oxygen in zone 3 and 4, the concentration of DO was increased up to 1.7 mg/L due to effects of microbubbles. In continuous flow type experiment based on the results of batch type experiments, the removal efficiency of nitrogen based on T-N was observed as 39.83% at operating pressure of 0.5 bar and 46.51% at operating pressure of 1 bar so it was able to know that sufficient air suction rate should be required for nitrification. Also, denitrification process could be achieved in a single reactor by using ejector type microbubble generator and organic matter and suspended solid could be removed. Therefore, it was possible to verify that zones could be separated into anoxic and aerobic and nitrification and denitrification process could be performed in a single reactor.

A Simulated Prediction for Influences of Operating Condition in an Alkaline Fuel Cell

  • Jo Jang-Ho;Yi Sung-Chul
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.163-170
    • /
    • 1999
  • The effects of the operating conditions in AFC single cells have not been studied in detail. In this study, by using a one-dimensional isothermal model a computational simulation was conducted to investigate the effects of the initial electrolyte concentration and the operating gas pressure. According to the result, the optimum electrolyte concentration at the base-case was found to be within $3.0\~3.5$ M. The variation of the cell performance according to the electrolyte concentration was found to be caused mainly by the charge transfer resistances of both electrodes, Henry's constant and the liquid phase diffusivity of the dissolved gases. It was also found that an increase in operating pressure increased the reaction rates and the solubilities of the gases, which led to a considerable enhancement of the cell performance.