References
- Choi MS, Lee TJ. Nitrogen removals according to aeration/non-aeration periods in the intermittent aeration reactor and analysis of microbial community. Environ. Eng. Res. 2014;36:42-48.
- Amand L, Olsson G, Carlsson B. Aeration control-a review. Water Sci. Technol. 2013;67:2374-2398. https://doi.org/10.2166/wst.2013.139
- Lee HK. A Study on the characteristics of organics and nitrogen removal using Intermittent Aeration fluidized bed by Swirl Flow. J. Korean Soc. Environ. Technol. 2013;14:145-152.
- Khanitchaidecha W, Nakaruk A, Koshy P, Futaba L. Comparison of simultaneous nitrification and denitrification for three different reactors. BioMed Res. Int. 2015;2015:1-7. https://doi.org/10.1155/2015/901508
- Lee SH, Park NB, Park SM, Jun HB. Effect on nitrogen removal in the intermittent aeration system with the anaerobic archaea added. J. Korean Soc. Environ. Eng. 2005;27:1186-1192.
- Stenstrom MK, Song SS. Effects of oxygen transport limitation on nitrification in the activated sludge process. Res. J. Water Pollut. Control Fed. 1991;63:208-219.
- Ju LK, Huang L, Trivedi H. Simultaneous nitrification and denitrification through low-do operation. In: Proceedings of the Water Environment Federation. WEFTEC; 2006; Dallas. p. 1583-1597.
- Bellucci M, Ofiţ̧eru ID, Graham DW, Head IM, Curtis TP. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 2011;77:7787-7796. https://doi.org/10.1128/AEM.00330-11
- Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol. 1999;39:61-68. https://doi.org/10.2166/wst.1999.0262
- Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 2011;66:3172-3179. https://doi.org/10.1016/j.ces.2011.02.043
- Hanotu JO, Bandulasena H, Zimmerman WB. Aerator design for microbubble generation. Chem. Eng. Res. Des. 2017;123:367-376. https://doi.org/10.1016/j.cherd.2017.01.034
- Tekile A, Kim Ih, Lee JY. Extent and persistence of dissolved oxygen enhancement using nanobubble. Environ. Eng. Res. 2016;21:427-435. https://doi.org/10.4491/eer.2016.028
- Li P. Development of advanced water treatment technology [dissertation]. Tokyo: Keio Univ.; 2006.
- Lim JY, Kim HS, Park DS, et al. Characteristic of mixing and DO concentration distribution in aeration tank by microbubble supply. J. Korea Academia-Industrial cooperation Soc. 2016;17:251-259.
- Parmar R, Majumder SK. Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report. Chem. Eng. Process.: Process Intensification 2013;64:79-97. https://doi.org/10.1016/j.cep.2012.12.002
- Kim HS, Lim JY, Park SY, Kim JH. Effects of distance of breaker disk on performance of ejector type microbubble generator. J. Civil Eng. 2018;22:1096-1100.
- Park NB, Choi WY, Yoon AH, Jun HB. Effects of DO concentration on simultaneous nitrification and denitrification (SND) in a Membrane Bioreactor (MBR). Korean J. Environ. Agric. 2009;28:371-377. https://doi.org/10.5338/KJEA.2009.28.4.371
- Kim IK, Lee SM, Lim KH. Effect of air-flow on enhanced nutrient removal and simultaneous nitrification/denitrification in DMR biofilm process. J. Korean Soc. Environ. Eng. 2008;30:992-998.
- Maeda Y, Hosokawa S, Baba Y, Tomiyama A, Ito Y. Generation mechanism of micro-bubbles in a pressurized dissolution method. Exp. Therm. Fluid Sci. 2015;60:201-207. https://doi.org/10.1016/j.expthermflusci.2014.09.010
- Zhang P, Zhou Q. Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration. Front Environ. Sci. Eng. China 2007;1: 49-52. https://doi.org/10.1007/s11783-007-0009-1