• Title/Summary/Keyword: Open-Loop-Control System

Search Result 300, Processing Time 0.025 seconds

A Study on the Parallel Operation and Control Loop Design of ZVT-Full Bridge DC/DC Converter (ZVT 풀 브리지 DC/DC 컨버터의 병렬 운전 및 제어기 설계에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Yoon, Suk-Ho;Chang, Sung-Won;Lee, Kyu-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.324-328
    • /
    • 2001
  • This paper presents parallel operation and control loop design of ZVT(Zero Voltage Transition) Full Bridge DC/DC Converter. At parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor devides the same current of unit converter and ZVT circuit and aids to high efficiency in the system. Base on the modeling of ZVT. Full Bridge Converter, the control loop is designed using a simple two-pole, one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system and open loop system is carried out and the superiority of the dynamic characteristics is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF

Linear Quadratic Control with Pole Placement for an Automotive Active Suspension System (극점배치기능을 갖는 LQ제어기 설계 및 자동차 능동 현가장치 제어에의 응용)

  • 최재원;서영봉;유완석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.513-517
    • /
    • 1995
  • In this paper, a relation of matrix Q in cost function to distances between the closed-loop and open-loop poles of a multi input controllable systems is studied. Futhmore, the state feedback gain with exact desired eigenvalues in the LQR is computed. The proposed scheme is applied to designing automotive active suspension control system for a half-car model and its performance is compared with the existing LQR control system design methodology.

  • PDF

The Role of Kinematics in Robot Development (로봇발전과 기구학의 역할)

  • Youm, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

Closed-Loop Timing Controller Design for Control Rod Drive Mechanism (CRDM) Control System in Pressurized Water Reactor

  • Kim, Byeong-Moon;Joon Lyou
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.167-174
    • /
    • 1997
  • The method that the operating condition of Control Rod Drive Mechanism (CRDM) can be monitored without mounting sensors within CRDM housing was developed, and by using this developed method the closed-loop controller for the CRDM was designed which can optimize the performance and maximize the reliability of CRDM operation. Neural network is utilized as pattern recognition engine in detecting CRDM actuation. In this paper, most problems in previous open loop system are resolved. The control algorithms for closed-loop system ore developed and implemented within the hardware of timing controller based on microprocessor. All functions in the timing controller ore verified by means of real time CRDM simulator. The results show that the timing controller performs its intended functions properly.

  • PDF

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

Development of Open-Loop Continuous Process Control System Using Inverter (산업용 인버터를 이용한 Open-Loop 연속 공정 제어 시스템 개발)

  • Byun, S.H;Jeon, M.R;Cheong, J.Y;Kim, J.B;Kim, K.S
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.294-295
    • /
    • 2011
  • This paper presents the design and development of Web control algorithm of continuous process control system using vector inverter. Web algorithm used tension control without the tension sensor, and it is to calculate the diameter of Web materials with maintain Web tension. The performance of Web control in this paper is verified by experiment.

  • PDF

A study on computer algorithm for pole assignment in multivariable control systems (다변수 제어계통의 극점배치를 위한 컴퓨터 앨고리즘에 관한 연구)

  • 한만춘;장성환
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.296-302
    • /
    • 1982
  • The computer algorithm and program are developed to obtain the Luenberger Canonical form and the transform matrices for linear time invariant multivariable control systems. The model controller of an eigth order system, which assigns the modes of the multivariable control systems and closed-loop matrices are computed numerically by the developed programs. It is shown that the computed results coincide with the Luenberger's and Kalman's method. The gain of the model controller has varied from 10$^{-3}$ to 10$^{5}$ by the modes assignment of the open-loop system.

  • PDF

Comparative Study between Two and Single-loop Control of Boost Converter for PVPCS (태양광용 부스트 컨버터의 2중 루프 제어 및 단일 루프 제어의 특성 비교)

  • Kim, Dong-Whan;Im, Ji-Hoon;Song, Seung-Ho;Choi, Ju-Yeop;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.153-159
    • /
    • 2012
  • In photovoltaic system, the characteristic of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, a boost converter of the PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristic of the boost converter by comparing single-loop control algorithm and two-loop control algorithm using both analog and digital control. The proposed both compensation method has been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control schemes.

  • PDF

Mode-decoupling controller for feedback model updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

Mode-decoupling Controller for Feedback Model Updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.