Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2014.14.9020

The Role of Kinematics in Robot Development  

Youm, Youngil (School of Mechanical&Advanced Material Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.20, no.3, 2014 , pp. 333-344 More about this Journal
Abstract
This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.
Keywords
robot; kinematics; kinematic notations; biomechanics; human gait; bipedal robot; spherical motor; passive walking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Adolfsson, H. Dankowicz, and A. Nordmark, "3D passive walkers: Finding periodic gaits in the presence o discontinuities," Nonlinear Dynamics, vol. 24, no. 2, pp. 205-229, 2001.   DOI
2 W. J. Chung, "New kinematic notation for the spatial mechanisms," Technical Report, Robotics Lab. (in Korean), POSTECH, 1989.
3 J. Denavit and R. S. Hartenberg, "Kinematic notations for lower-pair mechanisms based on matrices," Asme Trans. J. Applied Mechanics, vol. 77, series E, pp. 215-221, 1955.
4 W. K. Chung, Y. Youm, and S. D. Park, "Development of a heavyload handling robot and its pneumatic position servo controller," (3rd ISRAM, British Columbia, Canada, 1990) Robotics and Manufacturing, vol. 3, pp. 133-138, ASME Press, 1990.
5 H. R. Choi, W. K. Chung, and Y. Youm, "Kinematic analysis of POSTECH Hand I with new symbolic notation," KACC Conference, vol. 1, no. 2, pp. 1764-1769, 1996.
6 S. H. Collins, A. Ruina, R. Tedrake, and M. Wisse, "Efficient bipedal robots based on passive-dynamic walkers," Science, vol. 307, no. 5712, pp. 1082-1085, 2005.   DOI
7 M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, "The simplest walking model: Stability, complexity, and scaling," ASME J. Biomech. Eng., vol. 120, pp. 281-288, 1998.   DOI   ScienceOn
8 R. C. Goertz, "Fundamentals of general-purpose remote manipulators," Nucleonics, vol. 10, no. 11, pp. 36-45, 1952.
9 A. Goswami, B. Espiau, and A. Keramane, "Limit cycles and their stability in a passive bipedal gait," in Proc. IEEE Int. Conf. Robotics Automation, vol. 1, pp. 246-251, Minneapolis, MN, 1996.
10 A. Goswami, B. Thuilot, and B. Espiau, "A study of the passive gait of a compass-like biped robot: symmetry and chaos," Int. J. Robot. Res., vol. 17, no. 12, pp. 1282-1301, 1998.   DOI
11 R. D. Gregg and M. W. Spong, "Reduction-based control of three-dimensional bipedal walking robots," Int. J. Robot. Res., vol. 26, pp. 680-702, 2010.
12 J. W. Grizzle, J. Hurst, B. Morris, H.-W. Park, and K. Sreenath, "MABEL, a new robotic bipedal walker and runner," Proc. of Amer. Control Conf., pp. 2030-2036, St. Louis, MO, 2009.
13 K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, "The development of Honda humanoid robot," Proc. IEEE Int. Conf. Robotics Automation, vol. 2, pp. 1321-1326, Leuven, Belgium, May 1998.
14 D. G. Hobbelen and M. Wisse, Humanoid Robots: Human-like Machines, M. Hackel, Ed. InTech, pp. 277-294 2007.
15 S. J. Kwon, Y. Youm, and W. K. Chung, "General algorithm for Automatic Generation of the workspace four-link redundant manipulators," ASME Journal of Mechanical Design, vol. 116, pp. 967-968, 1994.   DOI
16 J.-S. Moon and M. W. Spong, "Classification of periodic and chaotic passive limit cycles for a compass-gait biped with asymmetries," Robotica, vol. 29, pp. 967-974, 2011.   DOI
17 T. McGeer, "Stability and control of two-dimensional biped walking," Technical report CSS-IS TR 88-01), Simon Fraser University, Centre for Systems Science, Burnaby, Canada, 1988.
18 T. McGeer, "Passive dynamic walking," Int. J. Robot. Res., vol. 9, no. 2, pp. 62-82, 1990.   DOI
19 T. A. McMahon, "Mechanics of locomotion," Int. J. Robot. Res., vol. 3, no. 2, pp. 4-28, 1984.   DOI
20 J.-S. Moon, D. M. Stipanovic, and M. W. Spong, "Gait generation and stabilization for nearly passive dynamic walking and speed regulation on flat ground," Submitted, 2013.
21 R. P. Paul, "Robot manipulators: mathematics, programming and control," MIT Press, Cambridge, MA, 1981.
22 D. L Pieper, "The kinematics of manipulators under control," Ph.D. Dissertation, Dept. of Computer Science, Stanford University, 1968.
23 P. T. Piiroinen, H. J. Dankowicz, and A. B. Nordmark, "On a normal-form analysis for a class of passive bipedal walkers," Int. J. Bifurcation and Chaos, vol. 11, no. 9, pp. 2411-2425, 2001.   DOI
24 F. Reuleaux, "Kinematics of machinery; outlines of theory of machines," 1875, later Translated and edited by B. W. Alexander and C. E. Kennedy and with a new introduction by Eugene S. Ferguson, Dover Publications, INC. 1963.
25 T. B Sheridan, "Supervisory control of remote maniuplators, vehicles and dynamic processes," In Rouse, W. B. (Ed.) Advance in Man-Machine Systems Research, vol. 1. NY: JAI Press, 49-137, 1984.
26 P. N. Sheth and J. J. Uicker, "A Genralized symbolic notation for mechanism," ASME Trans. J. Engineering of Industry, vol. 93, pp. 102-117, 1971.   DOI
27 H. Son and K. M. Lee, "Open-loop controller design and dynamic characteristics of a spherical wheel motor," IEEE Trans on Industrial Electronics, vol. 57, no. 1, pp. 3475-3482, 2010.   DOI
28 H. Son, J. Guo, and D. H. Kim, "Effects of magnetic pole design on orientation torque for a spherical motor," IEEE/ASME Trans. on Mechatronics, vol. 18, no. 4, pp. 1420-1425, Aug. 2013.   DOI
29 J. J. Uicker, J. Denavit, and R. S. Hartenberg, "An Iterative method for the displacement analysis of spatial mechanisms," ASME Trans., J. Applied Mechanic, vol. 86, Series E, pp. 309-314, 1964.
30 M. W. Spong, "Passivity based control of the compass gait biped," Proc. of IFAC Triennial World Congr., vol. 3, pp. 19-23, Beijing, China, 1999.
31 M. Vukobratovic and D. Juricic, "Contribution the synthesis of biped gait," Proc. of IFAC Symp. Technical and Biologicl Problem on Control, Erevan, USSR 1968.
32 M. Vukobratovic and Y. Stepanenko, "On the stability of anthropomorphic systems," Mathematical Biosciences, vol. 15, pp. 1-37, 1972.   DOI
33 E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, "Hybrid zero dynamics of planar biped walkers," IEEE Trans. Automat. Contr., vol. 48, no. 1, pp. 42-56, 2003.   DOI
34 S. N. Yadukumar, M. Pasupuleti, and A. D. Ames, "Human-inspired underactuated bipedal robotic walking with AMBER on at-ground, up-slope and uneven terrain," Proc. of IEEE/RSJ Int. Conf. Intelligent Robots Systems, pp. 2478-2483, Vilamoura, Portugal, 2012.
35 T. C. Yih, T. C. and Y. Youm, "Matrix solution for the inverse kinematics of robots," Proceedings Trends and Developments in Mechanisms, Machines, and Robotics, vol. 3, pp. 371-376, 1988.
36 Y. Youm, Y., T. C. Huang, E. M. Roberts, and R. Zernicke, "Mechanics of kicking," Mechanics of Sports-ASME, Ed. A. Burstein: pp. 183-195, 1974.
37 Y. Y. Youm and T. C. Huang, "Exact displacement analysis of four bar spatial mechanisms by the direction cosine matrix method," Journal of Applied Mechanics, vol. 51, pp. 921-928, 1984.   DOI
38 I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, "Mechanical design of the humanoid robot platform, HUBO," Advanced Robotics, vol. 21, no. 11, pp. 1305-1322, 2007.   DOI
39 C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. C. de Wit, and J. W. Grizzle, "RABBIT: a testbed for advanced control theory," IEEE Control Syst. Mag., vol. 23, no. 5, pp. 57-79, 2003.   DOI
40 M. W. Spong and F. Bullo, "Controlled symmetries and passive walking," IEEE Trans. Automat. Contr., vol. 50, no. 7, pp. 1025-1031, Jul. 2005.   DOI
41 Y. Youm and T. C. Huang, "Exact displacement analysis of XCCC spatial mechanisms," J. of Mechanisms and Machine Theory, vol. 25, no. 1, pp. 85-96, 1990.   DOI