• Title/Summary/Keyword: Open-Loop S-Parameter

Search Result 20, Processing Time 0.025 seconds

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific (수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구)

  • Chung W.J.;Kim H.G.;Kim K.J.;Kim K.T.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

A Heuristic Approach for Grading Operation of Hydraulic Excavator Systems using SMISMO Valve Configuration (SMISMO 밸브 구조를 채용한 유압식 굴삭기의 평탄화 작업을 위한 휴리스틱 접근)

  • Joh, Joongseon;Hwang, Cheol Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1153-1160
    • /
    • 2013
  • SMISMO valve configuration is now starting to draw attention of the researchers of the construction equipment industry to increase the fuel efficiency of their equipment like excavators and wheel-loaders. An open-loop control strategy for grading operation of hydraulic excavator systems using SMISMO valve configuration is investigated in this paper. Tabor's algorithm for 1 d.o.f. SMISMO system under the assumption of quasi-static operation is revealed as not adequate for multi d.o.f. system with large moment of inertia even though the motion of the system is slow. New parameters are proposed in this paper. It modifies Tabor's open-loop control strategy for the grading operation of hydraulic excavators using SMISMO valve configuration. A simulation-based parameter tuning method is also proposed. It uses GA (Genetic Algorithm) to find the best parameter values. Simulation study for a practical hydraulic excavator shows the validity of the proposed open-loop control strategy.

Design and Fabrication of Wide Electrical Tuning Range DRO Using Open-Loop Method (개루프 방법에 의한 확장된 전기적주파수조정범위를 갖는 유전체공진기발진기의 설계 및 제작)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.570-579
    • /
    • 2009
  • In this paper, we presented a Vt-DRO with a wide electrical frequency tuning range, using open-loop gain method. The Vt-DRO was composed of 3-stages, resonator, amplifier and phase shifter. In order to satisfy an oscillation condition, we determined magnitude and phase of each stage. The measured S-parameter of cascaded 3-stages shows open-loop oscillation condition. Also, using measured open loop group delay, we derived the relation for electrical frequency tuning range. The Vt-DRO was implemented by connecting the input and the output of the designed open-loop and resulted in closed-loop. As a results, tuning-range of Vt-DRO is 82 MHz, which is close to the predicted results for tuning voltage 0${\sim}$10 V and shows linear frequency tuning at the center frequency of 5.3 GHz. The phase noise is -104 ${\pm}$1 dBc/Hz at 100 kHz offset frequency and power is 5.86${\pm}$1 dBm respectively.

The Study of Servo-Parameter Tuning Technique for 6-Axes Articulated Robot Manipulator in Consideration of Dynamic Characteristics (동적 특성을 고려한 6축 로봇의 서보 파라미터 튜닝에 관한 연구)

  • Chung, W.J.;Kim, H.G.;Lee, C.M.;Hong, D.S.;Park, S.G.;Seo, Y.G.;Lee, G.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • This paper presents a new experimental Servo-Parameter tuning technique for a 6-axes articulated robot manipulator, especially considering robot's dynamics. First of all, investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer(DSA) is performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function can be obtained. In turn, the integral gain of a servo controller can be found out by using the integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller can be obtained by using the Bode plot of the closed loop transfer function. Using the experimental gain tuning technique proposed in this paper, the testing linear motion of DR6-II robot has been shown to be more accurate rather than the motion with a conventional(empirical) gain tuning technique in Doosan Mecatec Co., Ltd., by improving the dynamic response of the robot as well as synchronizing each joint velocity according to the positional command of an end-effector.

Development of Experimental Gain Tuning Technique for Multi-Axis Servo System (다축 서보 시스템의 Gain Tuning에 관한 연구)

  • Chung W.J.;Kim H.G.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-272
    • /
    • 2006
  • This paper presented a new experimental gain tuning technique for a Multi-Axis Servo System. First, the investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer (DSA) was performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function was obtained. In turn, the integral gain of a servo controller can be found out by using the Integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller has been obtained by using the Bode plot of the closed loop transfer function. We have also proposed the technique to find out an optimal parameter of a notch filter, which has a great influence on vibration reduction, by using the damping factor extracted from the Bode plot of closed loop transfer function.

  • PDF

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

Design of the optimal stochastic inputs for linear system parameter estimation (선형계통의 파라미터 추정을 위한 최적 확률 입력신호의 설계)

  • ;;Lee, S. W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.168-173
    • /
    • 1987
  • The optimal Input design problem for linear system Which have the common parameters in the system and noise transfer functions. Exploiting the assumed Model structure and deriving the information matrix structure in detail, D-optimal open-loop stochastic input can be realized as an ARMA process under the Input or output variance constraints. In spite of the reduced order, It Is necessary to develop an efficient algorithms for the optimation with respect to the .rho..

  • PDF

Tracking Control of Mechanical Systems with Partially Known Friction Model

  • Yang, Hyun-Suk;Martin C. Berg;Hong, Bum-Il
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.311-318
    • /
    • 2002
  • Two adaptive nonlinear friction compensation schemes are proposed for second-order nonlinear mechanical systems with a partially known nonlinear dynamic friction model to achieve asymptotic position and velocity tracking. The first scheme has auxiliary filtered states so that a simple open-loop observer can be used. The second one has a dual-observer structure to estimate two different nonlinear aspects of the friction state. Conditions for the parameter estimates to converge to the true parameter values are presented. Simulation results are utilized to show control performance and to demonstrate the convergence of the parameter estimates to their true values.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Eigenstructure Assignment for Linear Systems with Probabilistic Uncertainties

  • Seo, Young-Bong;Park, Jae-Weon;Lee, Dal-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.933-945
    • /
    • 2004
  • In this paper, S (stochastic)-eigenvalue concept and its S-eigenvector for linear continuous-time systems with probabilistic uncertainties is proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the probabilistic variable parameters in the dynamic model of a plant. S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue concept is also proposed. The proposed design schemes are illustrated by numerical examples, and applied to the longitudinal dynamics of open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure. These results explicitly characterize how S-eigenvalues in the complex plane may impose stability on S-eigenstructure assignment.