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Tracking Control of Mechanical Systems with Partially Known
Friction Model

Hyun Suk Yang, Martin C. Berg, and Bum Il Hong

Abstract: Two adaptive nonlinear friction compensation schemes are proposed for second-order nonlinear mechanical systems with a
partially known nonlinear dynamic friction model to achieve asymptotic position and velocity tracking. The first scheme has auxiliary
filtered states so that a simple open-loop observer can be used. The second one has a dual-observer structure to estimate two different

nonlinear aspects of the friction state. Conditions for the parameter estimates to converge to the true parameter values are presented.
Simulation results are utilized to show control performance and to demonstrate the convergence of the parameter estimates to their true

values.
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1. Introduction

Friction, which exists in virtually every mechanical dynamic
system, is difficult to model accurately and frequently nega-
tively impacts the performance of servomechanisms. Especially
in applications with high precision position or velocity tracking
objectives, the results are unsatisfactory in many cases. For con-
troller design in such situations, it is desirable to have a good
friction model available.

The classical friction models described by static maps be-
tween friction force and velocity capture static features such as
Coulomb friction and viscous friction. They can not explain
behaviours like hysteresis, pre-sliding displacement, varying
break-away force, and Stribeck effects. The spring-like behav-
ior during stiction is captured in the Dahl model (see [1]). The
Dahl model was modified to capture Stribeck effects and hys-
teresis in [2] and [3], respectively. The bristle model introduced
in [4] captures the slip-stick phenomenon well. Unfortunately,
it is numerically difficult to implement. Another mathematical
representation of the bristle model that captures most of the ex-
perimentally observed friction phenomena was proposed in [5].

While tribology researchers strive to better understand fric-
tion phenomenon, control system researchers are interested in
high precision position and low-velocity tracking control of me-
chanical systems subject to friction. In [6], the authors proposed
an adaptive controller for low-velocity robot position control
replacing the conventional exponential function that represents
the Stribeck effect with a linear parameterizable function. In
[7], a nonlinear low-velocity friction problem with a simple PD
controller was solved by reducing the number of parameters of
the friction model using dimensional analysis. In [8], the au-

Manuscript received: Oct. 20, 2001., Accepted: May 9, 2002

Hyun Suk Yang: School of Electronic and Electrical Engineering,

Hongik University (hsyang @wow.hongik.ac.kr)

Martin C. Berg: Dept. of Mechanical Engineering, University of Wash-

ington U.S.A. (berg@u.washington.edu)

Bum Il Hong: Dept. of Mathematics and Intitute of Natural Science,

Kyung Hee University (bihong @khu.ac.kr)

* This work was supported by Korea Science Foundation Grant
(KOSEF 981-0911-052-1)

thors proposed a model-based adaptive friction compensator for
a DC motor servomechanism that consisted of a two-step off-
line method to estimate the nonlinear static and dynamic param-
eters associated with the friction model and two adaptive glob-
ally stable mechanisms to deal with structured normal forces
and temperature variations. A new Lyapunov-based continuous
dynamic controller for a more general class of nonlinear sys-
tems with friction was proposed in [9]. In [10], an adaptive non-
linear friction compensation scheme based on a dual-observer
structure was proposed to handle parametric uncertainties of
the bristle friction model. In [11], an observer-based controller
for exact model knowledge position tracking for a second-order
mechanical system with the bristle model was proposed and
asymptotical tracking was studied while compensating for se-
leted parametric uncertainty.

Even though the adaptive schemes in [10] and [11] gave good
tracking results, they failed to show parameter convergence re-
sult. It is important to have parameter convergence result be-
cause firstly, it gives a good friction model, which can be used
for other compensator design, and secondly, it may be useful to
deal with full parametric uncertainties. To have parameter con-
vergence result a condition such as the persistence of excitation
condition is necessary but it is impossible to obtain such a con-
dition with the schemes in [10] and [11]. The simulation results
show that the estimated parameter values do not converge to the
true values.

The dynamics of a mechanical system subject to friction are
formulated in section 2 and two adaptive friction compensation
schemes are proposed in section 3 and 4 to achieve asymptotic
position and velocity tracking, which is obtained from the ones
in [10] and [11] with slight modification. This modification is
required to develop the persistence of excitation condition for
the uncertain parameter convergence. The persistence of exci-
tation condition and proof for parameter convergence are given
in section 3 and 4, also. In section 5, simulation results are
presented to support the theoretical concepts and this paper is
concluded in section 6.

II. Problem formulation

The dynamics of many mechanical systems subject to friction
are represented by
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(see [11])
Mg+ Bug+Tr(g,4) +£(9)z = u (1)

where M denotes the constant mechanical inertia of the system,
B, denotes the constant viscous friction coefficient, 77.(g, ¢)
denotes a scalar nonlinear load function of the position g and
velocity ¢, z denotes an unmeasurable internal friction state rep-
resenting the average deflection of thousands of bristles, and «
is the control input. The dynamics of the friction state z are
represented by

t=q— f(d)=z @
where f(q) is a non-negative function defined to be |¢|/g(¢)
where the function g(q) is used to describe various friction ef-
fects ([51). For example, g(¢) = fo + Biexp (~ (zj/ﬂg)z) has
been used to represent the Stribeck effect. With g(¢) = o this
friction model reduces to the Dahl model {5].

The friction force due to the bristle deflection is

d . .
F =0z + ald—j =614+ (60 — f(@01)z (3

where 8¢ and 6, are the bristle stiffness and viscous damping
constants, respectively. Equation (1) then represents the dynam-
ics of a mechanical system subject to friction with

£(q) =00 — f(§)6s 4)

In this paper, we assume that M, B, Tr(q, ¢), and f(q) are
known and will present a control input u(t), the dynamics of a
friction state estimate Z, and update rules for fo and 6,, which
are the estimates of 6y and 61, respectively, so that given a ref-
erence signal gq(t), the position and velocity tracking errors
and the estimation error of the internal friction state approach
zero asymptotically. We modify adaptive control laws in [10]
and [11] so that they are different in the sense that asymptotic
position and velocity trackings are achieved. We also present
conditions for parameter convergence which was not done in
either [10] or [11].

II. An adaptive scheme with filtered states
1. Adaptive control laws
In this section, an adaptive control algorithm with filtered
states for a system represented by (1) is proposed. Let g4 and
Ga be the desired position and velocity trajectories, respectively.
Define the error vector e(t) € R**" as

oty (O = (10— aal) )
ea(t) 4(t) — qa(t)
Then, from (1), we obtain the following state equations

€1 = e

é2 = M 'u-— Buqg—Tu(a,d) — @)zl —da (5)

Equation (5) can be written in the more compact form

é:<g é)e+( (1) )M‘lu:AejLBM*lv (6)

where the input v is given by

v=u— Byg—TrL(g,4) —&(¢)z — Mda @)

Since (A, B) is a controllable pair, we can choose a matrix F &€
R**? g0 that A,, = A — BF is Hurwitz. Then equation (6)
becomes

é=Apne+ BM (v + MFe) (8)

Since A, is Hurwitz there exist symmetric positive definite ma-
trices P and Q such that PA,, + AL P = —Q. Now, we are
ready to state the result.

Theorem 1: Consider a system with friction represented by
(1)-(4). We assume that ¢4 and ¢4 are bounded and smooth. Let
the control u(t) be given by

u = Bug+TL(q,q) + Mia — MFe + (6o — f(§)01)%
+00Co — (90161 (9
where the update rules for the parameter estimates 6y and 6y,

the friction state observer 2, and the auxiliary filtered state dy-
namics (o (¢) and {1 (¢) are given by

bo = —yo(2+Co)M BT Pe

b = mf@@E+0)M B Pe

:o= 4-f(9)z (10)
¢ = —f(d)o— M 'BTPe

G = —f@&+ f(@)M B Pe

where ~o and 1 are positive design constants. Then globally
asymptotic tracking of the position and velocity trajectories are
achieved.

Proof: Choose the candidate Lyapunov function V for the sys-
tem as

1. 1 - 1~ - -
V=e"Pet -2+ —03+—01+60(3—Co)* +6:1(2-G)°
2 Yo "
an
where éo = 6y — éo, 61 = 01 — él, and Z = z — 2. Itcan be
easily shown that since f(¢), o, and 6, are non-negative, the
derivative of V is given by

V =—e"Qe — f()2* — 00f(Q)(Z — ()?
—F()61(Z - ) < —efQe<0 (12)

Then we have that V() € Loo, which implies that e(t), 6o (t),
61(t), 3(t), Co(t), and (1 (t) are in Loo. As a result, fo and
61 are bounded. Since Gq is bounded, so is ¢, which results in
the boundedness of the friction state z and its estimate 2. The
boundedness of the control u is then apparent.

From (8) and the boundedness of all internal signals in the
system, the derivative of the error e is bounded. Also, from the
fact that V < —e’ Qe, it is apparent that e(t) € L. Then
we have that e(t) — 0 as t — oo, which completes the proof.
|
Remark: The adaptive gains o and v, in (10) can be any
positive nondecreasing functions of time. Then since the time
derivatives of 1/~ and 1/-1 are non-positive the derivative of
the Lyapunov function in (11) is non-positive.

2. Convergence of the estimated internal friction state

Convergence of the estimate of the internal friction state, Z, to
z is considered in this section. We know that the friction state
error 7 satisfies 7 = — f(@)Z. Note that non-negativeness of
f{(q) does not guarantee that Z converges to zero asymptotically.
The following assumption resolves this problem.
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Assumption 1: Suppose that g4(t) is the desired reference sig-

nal. We assume that there exists § > 0 such that for any § > §,
there exists o > 0 such that, for all £ > 0,

t+6
/ flda)dr 2 (13)
t

is satisfied.
Now, we are ready to state a theorem.

Theorem 2: Consider the system represented by (1)-(3) with
the control u(t) and update laws given as in Theorem 1. Sup-
pose that Assumption 1 is satisfied and that qq and ¢4 are
bounded smooth functions. Then the estimate of the friction
state, £, converges to the actual state z asymptotically. Further-
more, the state z converges asymptotically to a state z4 whose
state dynamics are represented by

Zg = qa — f(da)za (14)

with an arbitrary initial state.
Proof: First, we prove asymptotic convergence of 2 to z. We
know that

e

=~f(§)2=—fld)Z+ (f(da) — f(g)Z (15)

Let V(t) = £2%(t). Then its derivative is

V = —f(da)2* + (f(da) — ()2 (16)

Pick any § > & and @ > 0 that satisfies (13). Since the function
f is continuous and the fact that e(t) — 0 as t — oo from
Theorem 1, for any € > 0 there exists a 7. > 0 such that
|f(ga) — f(g)] < eforallt > T.. Let € = o/26. Then for any
t > T, by integrating (16) from ¢ to ¢ 4+ &, we obtain that

V(t+8)-V()
== /7 paF @+ [ (@) - F@) P (r)dr
< - ftm f(ga)2V (t + 8)dr + Ja2V (¢)
< =2aV(t+6) + aV(¢) (17

Here, we used the monotone nonincreasing property of V.
Then, (17) can be written as V (¢t + 8) < vV (¢) where

y=(14+a)/(l+2a)<1 (18)
This implies that for any positive integer N
V(t+ N&) <4V V() <yVV(TY) (19)

is satisfied for any t € [T, T. -+ 4), which implies that V' (¢) —
0 as t — oo. Therefore, we have that 2(¢) — z(t) as t — oo.

Let us prove that z(¢) — 24(t) ast — oo. Lete; = z — zq.
Then we have that

¢ —f(9)z — ga+ f(ga)2a
= —f(da)ez + (4 — da) + (f(da) — f())z (20)

€z

Lete = (¢ —ga)+{f(gs) — f(¢)]z. Because f is continuous, e
approaches zero asymptotically, ¢4 is bounded, and the state z is
bounded, €(t) approaches zero asymptotically. Then by Lemma
1 below, we have that e, (¢) — 0 as t — oo, which completes
the proof. |

It is well-known that a persistence of excitation condition is
needed for convergence of the parameter estimates to their ac-
tual values. Unfortunately, if the friction state z and/or its es-
timate 2 are needed in the condition, we have an unverifiable
condition since the friction state z is unmeasurable and its esti-
mate is not known a priori. In the next section, the persistence
of excitation condition will be constructed with z4, instead of z
or Z which is known a priori.

The following lemma is needed in the proof of Theorem 2
and later claims.

Lemma 1: Suppose that Assumption 1 is satisfied. Let a signal,
w(t), satisfy the state equation

w(t) = —f(ga)w(t) + (t) @1

where €(t) approaches zero asymptotically. Then for any initial
condition w(0), w(t) approaches zero asymptotically.

Proof: Suppose that ¢(¢, to) is the state transition function for
(21), so that

o(t, to) = — f(da)d(t, t) (22)

is satisfied for any ¢ and ¢o with ¢(¢,¢) = 1forallt. Let V(t) =
16(t,t0)?. Then V = —f(ga)¢(t, to)>. Given that f(g) > 0
for all £, it is easy to see that |¢(¢, to)| is nonincreasing for all
t > to. By integrating V' from ¢ to ¢ 4 §, we obtain that

t+6
V(t+8) = V(t) :—/ f(ga)d(r, to)dr (23)

Since V/(t) is nonincreasing we can say that

V(t+6)-V(t) < — /H(S F(Ga)dr2V (t46) < —2aV (t+6)

(24)
where a is chosen by Assumption 1. Then we obtain the re-
lationship V (t + §) < +*V/(t) for all ¢ > to where v* =
1/(1 + 2a) < 1. This implies that

|t + 6, 20)| < ¥lp(t, o)l < yld(to, to)} =y (25)
Now, we can write that

w(t) = ¢(t, to)w(to) +/ o(t, T)e(T)dr 26)

Since €(t) — 0 ast — oo, there exists T > 0 such that
[/ je(r)|dr <~ forall t > T. Then for any ¢ € [T, T + §)
and an arbitrary positive integer [N, we have that

lw(t + NJ)|
< o(t+ N6, t+ (N — DO)||Jw(t + (N — 1)5)|
t+N§
-l-/ |p(t + N, 7)|le(T)|dr
tH(N=1)5
t+ NS
< (et (V- 1)8)| + / () dr
tHN-1)8
< Al (N = )5t 4+ (N — 2)8) ot + (N — 2)3)

tH(N=1)5
n / l6(¢ + (N = 198, 7)][e(r)]d]

+(N=-2)8

t+NS
—I—/ le(T)|dr
t+(N—1)8
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tH(N=1)8
< e (V=20 1y [ e(rldr
t4(N=2)6
t+ NS
+/ le(T)|dT
t+(N—1)6
Letting & = [0 |e(r)ldr, i = 0, -+, (N — 1), and
continuing the process, we obtain that
N-1
lw(t + N6)| <AV w@®]+ Y AN e @D
1=0

Since ¢; < « for all ¢ and €; converges to zero, there ex-
ists a positive integer k such that vt < ¢ < +* for
i =0,---, (N —1). Furthermore, there exist N1, - -+, Ny such
that 0 < Ny < N3 € --- € Ny < Nand 4711 < ¢y < o9
for Njow < i < Nj,j=1,2,---, (k+1) with Ng =0
and Nk+ N. Note that as N — o0, so does k and that

1 =
(N—=Nj;)>(k—j)forj=1,---, k. Therefore, we have the
following:
N-1 k+1 N;j-1
=0 7=11i=
k41 Njfl
o3 SR
j=1i=N;_1
k41
e
-7
E+1
< 27 - k_+_1 k
Since kv® — 0 as k — oo, we have that Zl -0 'yN =i, —
0as N — oo. This implies that |w(t)| — 0 as ¢ — oo and this
completes the proof. |

Remark: Since e(t) — 0 asymptotically, Lemma | implies
that (o (¢) and ¢1(t) in (10) approach zero asymptotically when
Assumption 1 is satisfied.
3. Convergence of the estimates of the parameters

In this section, we show that the parameter estimate 6 =
(6o )"
(6o 61)" under an additional persistence of excitation condi-
tion. Let§ = 6 — 8 = (90 - éo 0 — él)T. Rewrite the error
equation (8) and the parameter update laws (10) as follows.

approaches the true unknown parameter 6 =

¢ = Ame+ BM '(v+ MFe)

= Ame+ BM ' (6o(2 + )

— f(@)01(2 + ¢1) — boz + £(4)612)

= Ame+BM ' (0"W —0"W — 6oz + f(§)612) (28)

= Ame+BM ™' (6TW - 67w +207(C0 — F(@)C)T)
i _5:< (2+ ¢)M~*B" Pe )

—f(@)(2 + )M~ BT Pe

= —M 'B"Pew 29)
where W = (—(2+G) f(@(E+¢)T and W =
(—(Z+¢) F@E+ Q)T Lete = —0TW +20T (0 —

f(@)¢1)T. Then because 2, (o(t), and ¢1(t) approach zero

asymptotically, €(¢) approaches zero asymptotically. Let x =
(eT éT)T. Then (28) and (29) can be written as

. A, M~BwT (1)
x ~M~"%(t)BTP 0 x
L[ M'B
0 €
= A.(t)x+ Bae (30)

Let Q = LTL4~I forany I € R**? and v > 0. Obviously Q
is a symmetric positive definite matrix. Since A,, is Hurwitz,
there exists a symmetric positive definite matrix P such that
AL P + PA, = —Q. Let xm(t) = (em(t)T 0.(6)T)T
and consider a system represented by Xm = Az (t)Xm. Leta
Lyapunov function be given by

V(t) = em” () Pem(t) + Om " (£)0m (t) 31

Then its derivative V will be

V(t) = —Xm" (£)CT Cxm(t), C:( L 0 > (32)

vyI 0

From Sections 4.5 and 5.6 of [12], if the signal W(t) satisfies
the persistence of excitation condition, which is that there exist
a1, ag, and § > 0 such that

t+48
al < / w(r)WT (1)dr < asl (33)
t

is satisfied for all ¢, the system is exponentially stable. In other
words, there exist k£ and « > 0 such that for any bounded initial
state T, (o)

1% ()] < |xem (t0) | [ke™ 7" (34)

This implies that the state transition matrix ®(¢,%40) for (30)
satisfies that ||®(t, to)|| < ke™ (%) Since e(t) in (30)
approaches zero asymptotically, we can prove that the state
x(t) approaches zero asymptotically using arguments similar
to those in Lemma 1. This implies that the parameter estimate
6 converges to the true value 6 asymptotically.

The persistence of excitation condition on w(t) is not a ver-
iftable condition because the signal w(t) utilizes the signals
£(t), Co(t), and ¢1(¢) which are generated in the adaptive sys-
tem. Therefore, there is no way to check this persistence con-
dition. However, notice that 2(¢) converges to zq4(t) asymp-
totically by Theorem 2 and that {o(t) and (i (t) approach zero
asymptotically, which implies that the signal W (¢) converges to
r(t) = (—za(t) f(4a)za(t))T, which is known a priori. Then,
provided w(t) is persistently exciting, there exists to > 0 such
that

1 )
goul < / v(T)re(r)Tdr < 2021 (35)
t

is satisfied for all ¢ > to, which implies that r(t) is also persis-
tently exciting. This is true vice versa, i.e., if r(¢) is persistently
exciting, so is W (£).

Now, we are ready to state the result on the convergence of
the parameter estimates. We need the following assumption
known as the persistence of excitation condition.
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Assumption 2: The reference signal g4(¢) is such that g4 and
g4 are bounded smooth differentiable functions and there exist
a1, agz, and § > 0 such that, for all £,

/.t+§ ( —‘Zd(T) ) ( 2 (T) ) T "
. f(da)za(T) f(da)za(T)

t+6
/ v(T)e(r)dr < gl (36)
t

051]

IA

where z4(t) is a solution of the system represented by z; =
Gd — f(da)zq with an arbitrary initial state z4(0). O

Note that the upper bound in (36) is satisfied whenever z4(t)
and f(qq) are bounded. This is the case because g4 and ¢4 are
bounded.

Theorem 3: Suppose that Assumption 1 and Assumption 2 are
satisfied. If the control w(t) and the update laws in Theorem 1
are applied to the system (1), the parameter error 6=0-0
approaches zero asymptotically.

Proof: The persistence of excitation condition (36) implies that
W(t) is persistently exciting. Then, by the arguments given
above, the state x(t) approaches zero asymptotically, which
completes the proof. |

IV. An adaptive scheme with a dual-observer

In this section, we propose an adaptive scheme with a dual-
observer structure similar to the one in [10]. Note that when
the term §(4)z = (8o — 01f(¢))= in (5) is estimated by (Go -
o f (q))z the estimation error which can be written as Gz -+
6oz — 01 f(¢)z — 01f(q)z contains two terms of the friction
state estimation error Z: one with and the other without the term
f(@). In the previous section, two filtered states, (o and 1,
are used to deal with those effects. In this section, instead, two
observers are used in parallel to estimate two different effects
of the unmeasurable friction state. Again, we deal with both
the position and velocity tracking errors whose dynamics are
represented by (8). We choose the control input u(t) as

u = Byq+TL(q,d)+Mis— MFe+0030—01 f(§)51 (37)

where 2 and 2; are two different estimates of the internal fric-
tion state z. The estimate updating rules and the observers are
given by

o = —vM 'BPes

0 = wf@M *BPes

0 = ¢—fl¢)s0— M 'BPe (38)
2= §-f(@4 - f(@)M *BPe

where the update gains o and 1 are any positive constants or
positive nondecreasing functions of time as in Section 3. Now,
let Zo = z — Zp and 2, = z — %;. Let the candidate Lyapunov
function be

1 -
V=¢"Pe+ =02+ lel + 52452 (39
Yo 71
Then, its derivative satisfies that
V=-—e"Qe-2f({)(32+:) < —eTQe<0 (40)

since f(q) is non-negative for all time.

sSecands

(a) The case with filtered states

o 50 100 150 200 250 300 350
seconds

(b) The case with a dual-observer
Fig. 1. Position Tracking Errors

Theorem 4: Consider a mechanical system with friction rep-
resented by (1)-(4). Assume that the reference signal g4 and its

. derivative g4 are bounded smooth functions. Let the adaptive

nonlinear controller be given by (37) with the parameter update
laws and the friction observers given in (38). Then globally
asymptotic tracking of the desired position and velocity trajec-
tories is achieved.
Proof. The global uniform boundedness of all errors are guar-
anteed by the definition of the Lyapunov function in (39) and
the non-positivity of its derivative. Then, by arguments similar
to those in Theorem 1, the asymptotic tracking properties of the
position and velocity trajectories are achieved. 0

The convergences of the estimates 2, and 31 of the friction
state to the actual state z are achieved by Lemma 1 if Assump-
tion 1 is satisfied since the error e(t) approaches zero asymptot-
ically. Furthermore, it can be easily shown that the state z ap-
proaches a reference state 24 whose dynamics are represented
by Z4 = 44 — f(§a)za with an arbitrary initial condition. Then,
again by the arguments in Section 3.3, it can be easily shown
that if the persistence of excitation condition (36) is satisfied,
the parameler estimates 6y and é; converge to the actual values
0o and 01, respectively.

V. Simulation results
In this section we apply our adaptive controllers to the same
mathematical model of a motor/mechanical friction system as
in [11]. The parameter values are M = 0.125kg - m?, B, =
1.42Nm - s/rad, Tr.(q,4) = 0, 6p = 12Nm/rad, 6; =
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seconds

(a) The case with filtered states

0 50 100 160 200 250
seconds

(b) The case with a dual-observer .
Fig. 2. Velocity tracking errors.

0.1Nm - s/rad, Bo = 3.24, #1 = 5.21, and B> = 3.00. The
desired position trajectory is ¢q(t) = tan™'(4sin(0.5t))(1 —
exp(—0.01t%)) rads. The adaptive gains o and v, are in-
creased from 3 to 40 and from 0.01 to 1000 as time increases,
respectively. The changes in the gains are not optimal in any
sense but were chosen arbitrarily. Simulation was done us-
ing MATLAB SIMULINK with ode23 for solving the nonlin-
ear state equations. The initial estimates were 6o(0) = 6 and
6, {0) = 0.05 which are the half of the actual values. All other
initial values were set to zero.

The position and velocity errors are shown in Fig.1 and Fig.2,
respectively. For the position tracking error, the two controllers
produce similar results. For the velocity tracking error, the con-
troller with a dual-observer has smaller error than the one with
filtered states. This is because the control input of the error dy-
namics represented by (5) contains the term 6o Co, which is large
for some period of time.

The estimation errors of the unmeasurable internal friction
state are shown in Fig.3. For the adaptive controller with filtered
states, the initial error was set to be -1 (if the initial error was
set to zero, the estimate error would be zero for all time). For
the one with a dual-observer, the initial errors were set to zero.
It is easy to see that the errors approach zero asymptotically.

Fig.4 and Fig.5 show the estimation for the parameters 6y and
01, respectively. The convergence rates of the two controllers
are virtually the same because their update rules for 8y and 6,
are the same. The estimate 6y converges to the actual value
0o faster than the estimate él converges to 81 because the term

seconds

(a) The case with filtered states

seconds

(b) The case with a dual-observer
Fig. 3. Estimation errors of the internal friction state.

containing fo in the error dynamics (5) is dominant compared
with the term containing 6:.

V1. Conclusion

In this paper, two adaptive control algorithms were proposed
to achieve position and velocity tracking for a second-order
nonlinear mechanical system using the nonlinear dynamic fric-
tion model proposed in [5]. The adaptive schemes are obtained
from the schemes in [10] and [11] with slight modification.
They are different in that the position and the velocity trajec-
tory tracking errors are treated together. Also, conditions for
the parameter estimates to converge to their actual values are
also given, which was neither mentioned in [10] nor in [11].
Simulation results are presented to illustrate the performance
of the controllers and to demonstrate that all of the parameter
estimates converge to their actual values.

Further research will be done to deal with the nonlinear pa-
rameter uncertainties caused by &g, 51, and (2. Due to their
severe nonlinearities asymptotic tracking properties can not be
obtained with simple linear adaptive control laws. We will need
sophisticated nonlinear adaptive control law to deal with these
uncertainties. Also, developing new schemes for faster asymp-
totic tracking and parameter convergence are remained as future
researches.
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Fig. 4. Estimation of the parameter 6.
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