• Title/Summary/Keyword: Open-CV

Search Result 404, Processing Time 0.024 seconds

Stereoscopic Video Display System Based on H.264/AVC (H.264/AVC 기반의 스테레오 영상 디스플레이 시스템)

  • Kim, Tae-June;Kim, Jee-Hong;Yun, Jung-Hwan;Bae, Byung-Kyu;Kim, Dong-Wook;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.450-458
    • /
    • 2008
  • In this paper, we propose a real-time stereoscopic display system based on H.264/AVC. We initially acquire stereo-view images from stereo web-cam using OpenCV library. The captured images are converted to YUV 4:2:0 format as a preprocess. The input files are encoded by stereo-encoder, which has a proposed estimation structure, with more than 30 fps. The encoded bitstream are decoded by stereo-decoder reconstructing left and right images. The reconstructed stereo images are postprocessed by stereoscopic image synthesis technique to offer users more realistic images with 3D effect. Experimental results show that the proposed system has better encoding efficiency compared with using a conventional stereo CODEC(coder and decoder) and operates with real-time processing and low complexity suitable for an application with a mobile environment.

Development of concentration measurement system in online education based on OpenCV (온라인 교육을 위한 OpenCV 기반 집중도 측정 시스템 개발)

  • Yim, Dae-Geun;Koh, Kyu Han;Jo, Jaechoon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.195-201
    • /
    • 2020
  • There have been many developments and innovations in the educational environments in line with the rapidly evolving information age. E-Learning is a representative example of this rapid evolution. However, E-Learning is challenging to maintain students' concentration because of the low engagement level and limited interactions between instructors and students. Additionally, instructors have limitations in identifying learners' concentration. This paper proposes a system that can measure E-learning users' concentration levels by detecting the users' eyelid movement and the top of the head. The system recognizes the eyelid and the top of the head and measures the learners' concentration level. Detection of the eyelid and the top of the head triggers an event to assess the learners' concentration level based on the users' response. After this process, the system provides a normalized concentration score to the instructor. Experiments with experimental groups and control groups were conducted to verify and validate the system, and the concentration score showed more than 90% accuracy.

Efficient Real-time Lane Detection Algorithm Using V-ROI (V-ROI를 이용한 고효율 실시간 차선 인식 알고리즘)

  • Dajun, Ding;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.349-355
    • /
    • 2012
  • Information technology improves convenience, safety, and performance of automobiles. Recently, a lot of algorithms are studied to provide safety and environment information for driving, and lane detection algorithm is one of them. In this paper, we propose a lane detection algorithm that reduces the amount of calculation by reducing region of interest (ROI) after preprocessing. The proposed algorithm reduces the area of ROI a lot by determining the candidate regions near lane boundaries as V-ROI so that the amount of calculation is reduced. In addition, the amount of calculation can be maintained almost the same regardless of the resolutions of the input images by compressing the images since the lane detection algorithm does not require high resolution. The proposed algorithm is implemented using C++ and OpenCV library and is verified to work at 30 fps for realtime operation.

Development of a Blocks Recognition Application for Children's Education using a Smartphone Camera (스마트폰 카메라 기반 아동 교육용 산수 블록 인식 애플리케이션 개발)

  • Park, Sang-A;Oh, Ji-Won;Hong, In-Sik;Nam, Yunyoung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2019
  • Currently, information society is rapidly changing and demands innovation and creativity in various fields. Therefore, the importance of mathematics, which can be the basis of creativity and logic, is emphasized. The purpose of this paper is to develop a math education application that can further expand the logical thinking of mathematics and allow voluntary learning to occur through the use of readily available teaching aid for children to form motivation and interest in learning. This paper provides math education applications using a smartphone and blocks for children. The main function of the application is to shoot with the camera and show the calculated values. When a child uses a block to make a formula and shoots a block using a camera, you can directly see the calculated value of your formula. The preprocessing process, text extraction, and character recognition of the photographed images have been implemented using OpenCV libraries and Tesseract-OCR libraries.

2-Axis Cartesian Coordinate Robot Optimization for Air Hockey Game (에어 하키 게임을 위한 2축 직교 좌표 로봇 최적화)

  • Kim, Hui-yeon;Lee, Won-jae;Yu, Yun Seop;Kim, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.436-438
    • /
    • 2019
  • Air hockey robots are machine vision systems that allow users to play hockey balls through the camera. The position detection of the hockey ball is realized by using the color information of the ball using OpenCV library. It senses the position of the hockey ball, predicts its trajectory, and sends the result to the ARM Cortex-M board. The ARM Cortex-M board controls a 2- Axis Cartesian Coordinate Robot to run an air hockey game. Depending on the strategy of the air hockey robot, it can operate in defensive, offensive, defensive and offensive mode. In this paper, we describe a vision system development and trajectory prediction system and propose a new method to control a biaxial orthogonal robot in an air hockey game.

  • PDF

A Study on the Autonomous Driving Algorithm Using Bluetooth and Rasberry Pi (블루투스 무선통신과 라즈베리파이를 이용한 자율주행 알고리즘에 대한 연구)

  • Kim, Ye-Ji;Kim, Hyeon-Woong;Nam, Hye-Won;Lee, Nyeon-Yong;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.689-698
    • /
    • 2021
  • In this paper, lane recognition, steering control and speed control algorithms were developed using Bluetooth wireless communication and image processing techniques. Instead of recognizing road traffic signals based on image processing techniques, a methodology for recognizing the permissible road speed by receiving speed codes from electronic traffic signals using Bluetooth wireless communication was developed. In addition, a steering control algorithm based on PWM control that tracks the lanes using the Canny algorithm and Hough transform was developed. A vehicle prototype and a driving test track were developed to prove the accuracy of the developed algorithm. Raspberry Pi and Arduino were applied as main control devices for steering control and speed control, respectively. Also, Python and OpenCV were used as implementation languages. The effectiveness of the proposed methodology was confirmed by demonstrating effectiveness in the lane tracking and driving control evaluation experiments using a vehicle prototypes and a test track.

Development of Kid Height Measurement Application based on Image using Computer Vision (컴퓨터 비전을 이용한 이미지 기반 아이 키 측정 애플리케이션 개발)

  • Yun, Da-Yeong;Moon, Mi-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.117-124
    • /
    • 2021
  • Among growth disorders, 'Short Stature' can be improved through rapid diagnosis and treatment, and for that, it is important to detect early'Short Stature'. It is recommended to measure the height steadily for early detection of 'Short Stature' and checking the kid's growth process, but existing height measurement methods have problems such as time and space limitations, cost occurrence, and difficulty in keeping records. So in this paper, we proposed an 'Development of Kid Height Measurement Application based on Image using computer vision' method using smart phones, a medium that is highly accessible to people. In images taken through a smartphone camera, the kid's height is measured using algorithms from OpenCV, a computer vision library, and the measured heights were printed on the screen through 'a comparison graph with the standard height by gender and age' and 'list by date', made possible to check the kid's growth process. It is expected to measure height anytime, anywhere without time and space limitations and costs through this proposed method, and it is expected to help early detection of 'Short Stature' and other disorder through steady height measurement and confirmation of growth process.

Conversion Program of Music Score Chord using OpenCV and Deep Learning (영상 처리와 딥러닝을 이용한 악보 코드 변환 프로그램)

  • Moon, Ji-su;Kim, Min-ji;Lim, Young-kyu;Kong, Ki-sok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.69-77
    • /
    • 2021
  • This paper deals with the development of an application that converts the PDF music score entered by the user into a MIDI file of the chord the user wants. This application converts the PDF file into a PNG file for chord conversion when the user enters the PDF music score file and the chord which the user wants to change. After recognizing the melody of sheet music through image processing algorithm and recognizing the tempo of sheet music notes through deep learning, then the MIDI file of chord for existing sheet music is produced. The OpenCV algorithm and deep learning can recognize minim note, quarter note, eighth note, semi-quaver note, half rest, eighth rest, quarter rest, semi-quaver rest, successive notes and chord notes. The experiment shows that the note recognition rate of the music score was 100% and the tempo recognition rate was 90% or more.

Study on the Quadcopter for Person Search using PID Control and HSV (PID 제어 및 HSV를 활용한 인명 수색용 쿼드콥터에 관한 연구)

  • Ji, Min-Seok;Kim, Byeong-Kwan;Kim, Jun-Woo;Park, Nae-Hyeok;Park, Hyoung-keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.139-146
    • /
    • 2022
  • Mountain accidents such as forest fires and missing people are increasing as hikers increase due to indoor activities restrictions caused by the prolonged COVID-19 incident. If a dangerous situation occurs at outside where rescue workers cannot reach, the search time for person can be reduced using a quadcopter. Considering this, in this paper, Multiwii is used to smoothly hover the quadcopter by setting optimized PID values of the x-axis, y-axis, and z-axis (Yaw) according to the change in the inclination of the gas. In addition, after installing Open CV on Raspberry Pie, the camera uses HSV color space to filter the color such as the description of the person, and uses a thermal imaging camera to receive thermal sensing images in real time in environments where color extraction is difficult. As a result, it was confirmed that hovering was possible at a height of 2 to 8 m, blue extraction was possible at a height of 5 m, and heat detection was possible at a distance of less than 10 cm.

Non-pneumatic Tire Design System based on Generative Adversarial Networks (적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템)

  • JuYong Seong;Hyunjun Lee;Sungchul Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.34-46
    • /
    • 2023
  • The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

  • PDF