• Title/Summary/Keyword: Open loop

Search Result 848, Processing Time 0.026 seconds

An Upshift Improvement in the Quality of Forklift's Automatic Transmission by Learning Control (학습제어를 이용한 지게차 자동변속기 상향 변속품질 개선)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • Recently, automatic transmissions caused a good improvement in the shift quality of a forklift. An advanced shift control algorithm, which was based on TCU firmware, was applied with embedded control technology and microcontrollers. In the clutch-to-clutch shifting, one friction element is released and the other friction element is activated. During this process, if the release and application timings are not synchronized, an overrun or tie-up occurs and ultimately leads to a shift shock. The TCU, which measures only the speed of the forklift, inevitably applies the open-loop shift control. In this situation, the speed ratio does not change during the clutch fill. The torque phase occurs until the clutch is disengaged. In this study, an offline shift logic of the learning control was proposed. It induced a synchronous shift when the learning control progressed. During this process, the reference current trajectory of the release clutch was corrected and applied to the next upshift. We considered the results of the overrun/tie-up characteristics of the upshift performed immediately before. The vehicle test proved that the deviation in shift quality, which was caused by the difference in the mechanical characteristics of the clutch, could be improved by the learning control.

Quasi-nonvolatile Memory Characteristics of Silicon Nanosheet Feedback Field-effect Transistors (실리콘 나노시트 피드백 전계효과 트랜지스터의 준비휘발성 메모리 특성 연구)

  • Seungho Ryu;Hyojoo Heo;Kyoungah Cho;Sangsig Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.386-390
    • /
    • 2023
  • In this study, we examined the quasi-nonvolatile memory characteristics of silicon nanosheet (SiNS) feedback field-effect transistors (FBFETs) fabricated using a complementary metal-oxide-semiconductor process. The SiNS channel layers fabricated by photoresist overexposure method had a width of approximately 180 nm and a height of 70 nm. The SiNS FBFETs operated in a positive feedback loop mechanism and exhibited an extremely low subthreshold swing of 1.1 mV/dec and a high ON/OFF current ratio of 2.4×107. Moreover, SiNS FBFETs represented long retention time of 50 seconds, indicating the quasi-nonvolatile memory characteristics.

Wideband Resistive LNA based on Noise-Cancellation Technique Achieving Minimum NF of 1.6 dB for 40MHz (40MHz에서 1.6 dB 최소잡음지수를 얻는 잡음소거 기술에 근거한 광대역 저항성 LNA)

  • Choi Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.63-74
    • /
    • 2024
  • This Paper presents a resistive wideband fully differential low-noise amplifier (LNA) designed using a noise-cancellation technique for TV tuner applications. The front-end of the LNA employs a cascode common-gate (CG) configuration, and cross-coupled local feedback is employed between the CG and common-source (CS) stages. The moderate gain at the source of the cascode transistor in the CS stage is utilized to boost the transconductance of the cascode CG stage. This produces higher gain and lower noise figure (NF) than a conventional LNA with inductor. The NF can be further optimized by adjusting the local open-loop gain, thereby distributing the power consumption among the transistors and resistors. Finally, an optimized DC gain is obtained by designing the output resistive network. The proposed LNA, designed in SK Hynix 180 nm CMOS, exhibits improved linearity with a voltage gain of 10.7 dB, and minimum NF of 1.6-1.9 dB over a signal bandwidth of 40 MHz to 1 GHz.

Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation (모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가)

  • Kwanwoo Lee;Junheon Yoon;Suhan Park;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

Single Channel Analysis of Xenopus Connexin 38 Hemichannel (제노푸스 Cx38 세포막채널의 단일채널분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1517-1522
    • /
    • 2007
  • Gap junction channels formed by two adjacent cells allow the passage of small molecules up to ${\sim}\;1\;kDa$ between them. Hemichannel (connexon or half of gap junction) also behaves as a membrane channel like sodium or potassium channels in a single cell membrane. Among 26 types of connexin (Cx), $Cx32^*43E1$ (a chimera in which the first extracellular loop of Cx32 has been replaced with that of Cx43), Cx38, Cx46, and Cx50 form functional hemichannels as well as gap junction channels. Although it is known that Xenopus oocytes express endogenous connexin 38 (Cx38), its biophysical characteristics at single channel level are poorly understood. In this study, we performed single channel recordings from single Xenopus oocytes to acquire the biophysical properties of Cx38 including voltage-dependent gating and permeation (conductance and selectivity). The voltage-dependent fast and slow gatings of Cx38 hemichannel are distinct. Fast gating events occur at positive potentials and their open probabilities are low. In contrast, slow gatings dominate at negative potentials with high open probabilites. Based on hi-ionic experiments, Cx38 hemichannel is anion-selective. It will be interesting to test whether charged amino acid residues in the amino terminus of Cx38 are responsible for voltage gatings and permeation.

Comparison of Nutrient Replenishing Effect under Different Mixing Methods in a Closed-loop Soilless Culture using Solar Radiation-based Irrigation (적산 일사 제어법으로 관수하는 순환식 수경재배에서 배액 혼합 방식에 의한 재사용 양액 내 양분 조정효과 비교)

  • Ahn, Tae-In;Shin, Jong-Hwa;Noh, Eun-Hee;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.247-252
    • /
    • 2011
  • Electrical conductivity, drainage, and irrigation amount of nutrient solution are important factors for determination of the mixing ratio of fresh and reused nutrient solutions in closed-loop soilless culture. Generally a fixed mixing ratio is applied in commercial scale greenhouses using solar radiation-based irrigation system. Although it ensures continuous supply of fresh nutrient solution in the mixing process, occasional discharge of the drainage is inevitably required. This study was conducted to compare the nutrient replenishing effect under different mixing processes and to investigate appropriate mixing process. For this experiment, a fixed mixing ratio (FR), modifiable mixing ratio (MR), and open-loop (OP) as control were applied. Mixing ratio was determined by a set value of EC for dilution of collected drainage in FR and the set values of 1.0 and $2.0dS{\cdot}m^{-1}$ were used as treatments (FR 1.0 and FR 2.0), respectively. In MR, mixing ratio was determined based on EC and volume of drainage within irrigation volume per event. The volume of drainage stored in the drainage tank tended to increase in FR 1.0. Although such trend was not observed in FR 2.0 and MR, the volume of drainage stored in MR was lower than that in FR 2.0. The ion balance of $Mg^{2+}:K^+:Ca^{2+}$ or $SO^{2-}_4:NO^-_3:PO^{3-}_4$ in the drainage and reused nutrient solution changed within a narrow range regardless of treatment.

Noise Characteristics of 64-channel 2nd-order DROS Gradiometer System inside a Poorly Magnetically-shielded Room (저성능 자기차폐실에서 64채널 DROS 2차 미분계 시스템의 잡음 특성)

  • Kim, J.M.;Lee, Y.H.;Yu, K.K.;Kim, K.;Kwon, H.;Park, Y.K.;Sasada, Ichiro
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • We have developed a second-order double relaxation oscillation SQUID(DROS) gradiometer with a baseline of 35 mm, and constructed a poorly magnetically-shielded room(MSR) with an aluminum layer and permalloy layers for magnetocardiography(MCG). The 2nd-order DROS gradiometer has a noise level of 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz inside the heavily-shielded MSR with a shielding factor of $10^3$ at 1 Hz and $10^4-10^5$ at 100 Hz. The poorly-shielded MSR, built of a 12-mm-thick aluminum layer and 4-6 permalloy layers of 0.35 mm thickness, is 2.4mx2.4mx2.4m in size, and has a shielding factor of 40 at 1 Hz, $10^4$ at 100 Hz. Our 64-channel second-order gradiometer MCG system consists of 64 2nd-order DROS gradiometers, flux-locked loop electronics, and analog signal processors. With the 2nd-order DROS gradiometers and flux-locked loop electronics installed inside the poorly-shielded MSR, and with the analog signal processor installed outside it, the noise level was measured to be 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz on the average even though the MSR door is open. This result leads to a low noise level, low enough to obtain a human MCG at the same level as that measured in the heavily-shielded MSR. However, filters or active shielding is needed fur clear MCG when there is large low-frequency noise from heavy air conditioning or large ac power consumption near the poorly-shielded MSR.

  • PDF

A 12b 1kS/s 65uA 0.35um CMOS Algorithmic ADC for Sensor Interface in Ubiquitous Environments (유비쿼터스 환경에서의 센서 인터페이스를 위한 12비트 1kS/s 65uA 0.35um CMOS 알고리즈믹 A/D 변환기)

  • Lee, Myung-Hwan;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This work proposes a 12b 1kS/s 65uA 0.35um CMOS algorithmic ADC for sensor interface applications such as accelerometers and gyro sensors requiring high resolution, ultra-low power, and small size simultaneously. The proposed ADC is based on an algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. Two versions of ADCs are fabricated with a conventional open-loop sampling scheme and a closed-loop sampling scheme to investigate the effects of offset and 1/f noise during dynamic operation. Switched bias power-reduction techniques and bias circuit sharing reduce the power consumption of amplifiers in the SHA and MDAC. The current and voltage references are implemented on chip with optional of-chip voltage references for low-power SoC applications. The prototype ADC in a 0.35um 2P4M CMOS technology demonstrates a measured DNL and INL within 0.78LSB and 2.24LSB, and shows a maximum SNDR and SFDR of 60dB and 70dB in versionl, and 63dB and 75dB in version2 at 1kS/s. The versionl and version2 ADCs with an active die area of $0.78mm^2$ and $0.81mm^2$ consume 0.163mW and 0.176mW at 1kS/s and 2.5V, respectively.

Design of a Ultra Miniaturized Voltage Tuned Oscillator Using LTCC Artificial Dielectric Reson (LTCC 의사 유전체 공진기를 이용한 초소형 전압제어발진기 설계)

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.613-623
    • /
    • 2012
  • In this paper, we present an ultra miniaturized voltage tuned oscillator, with HMIC-type amplifier and phase shifter, using LTCC artificial dielectric resonator. ADR which consists of periodic conductor patterns and stacked layers has a smaller size than a dielectric resonator. The design specification of ADR is obtained from the design goal of oscillator. The structure of the ADR with a stacked circular disk type is chosen. The resonance characteristic, physical dimension and stack number are analyzed. For miniaturization of ADRO, the ADR is internally implemented at the upper part of the LTCC substrate and the other circuits, which are amplifier and phase shifter are integrated at the bottom side respectively. The fabricated ADRO has ultra small size of $13{\times}13{\times}3mm^3$ and is a SMT type. The designed ADRO satisfies the open-loop oscillation condition at the design frequency. As a results, the oscillation frequency range is 2.025~2.108 GHz at a tuning voltage of 0~5 V. The phase noise is $-109{\pm}4$ dBc/Hz at 100 kHz offset frequency and the power is $6.8{\pm}0.2$ dBm. The power frequency tuning normalized figure of merit is -30.88 dB.

Analysis of the Vent Path Through the Pressurizer Manway Under the Loss of Residual Heat Removal(RHR) System During Mid-Loop Operation in PWR (가압경수로 부분충수 운전중 잔열제거 (RHR)계통 상실시 가압기 통로를 통한 배출유로 특성 분석)

  • Ha, G.S.;Kim, W.S.;Chang, W.P.;Yoo, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.859-869
    • /
    • 1995
  • The present study is to understand the physical phenomena anticipated during the accident with RHR loss under mid-loop operation in a PWR and, at the same time, to examine the prediction capability of RELAP5/MOD3.1 on such an accident, by simulating an integral test relevant to this accident for reliable analysis in an actual PWR. The selected experiment, i.g. BETHSY Test 6.9a, represents the configuration with the pressurizer manway open and steam generators unavailable during the accident. Accordingly, the results of this ok are sure to contribute to understanding both the key events as well as the sensitive parameters, anticipated in the accident, for validity of the actual analysis. In the simulation result overall behavior as well as major phenomena observed in the experiment have been predicted reasonably by RELAP5/MOD3.1, however, the problem associated with enormous computing time .due to small time step size has been encountered. Besides, the code prediction of higher swollen level in the pressure vessel has given rise to overestimation of both pressurizer level and RCS pressure. Subsequently, overprediction of the break flow through the manway has led to earlier core uncovery than that in the experiment by about 400 seconds. As a whole, it is demonstrated from both the experiment and the analysis that gravity feed has not been sufficient to recover the core level and thus additional forced feed has been necessary in this configuration.

  • PDF