Comparison of Nutrient Replenishing Effect under Different Mixing Methods in a Closed-loop Soilless Culture using Solar Radiation-based Irrigation

적산 일사 제어법으로 관수하는 순환식 수경재배에서 배액 혼합 방식에 의한 재사용 양액 내 양분 조정효과 비교

  • Ahn, Tae-In (Department of Plant Science and Research Institute for Agriculture and Life Sciences) ;
  • Shin, Jong-Hwa (Department of Plant Science and Research Institute for Agriculture and Life Sciences) ;
  • Noh, Eun-Hee (Department of Plant Science and Research Institute for Agriculture and Life Sciences) ;
  • Son, Jung-Eek (Department of Plant Science and Research Institute for Agriculture and Life Sciences)
  • 안태인 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 신종화 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 노은희 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Received : 2011.12.08
  • Accepted : 2011.12.23
  • Published : 2011.12.31

Abstract

Electrical conductivity, drainage, and irrigation amount of nutrient solution are important factors for determination of the mixing ratio of fresh and reused nutrient solutions in closed-loop soilless culture. Generally a fixed mixing ratio is applied in commercial scale greenhouses using solar radiation-based irrigation system. Although it ensures continuous supply of fresh nutrient solution in the mixing process, occasional discharge of the drainage is inevitably required. This study was conducted to compare the nutrient replenishing effect under different mixing processes and to investigate appropriate mixing process. For this experiment, a fixed mixing ratio (FR), modifiable mixing ratio (MR), and open-loop (OP) as control were applied. Mixing ratio was determined by a set value of EC for dilution of collected drainage in FR and the set values of 1.0 and $2.0dS{\cdot}m^{-1}$ were used as treatments (FR 1.0 and FR 2.0), respectively. In MR, mixing ratio was determined based on EC and volume of drainage within irrigation volume per event. The volume of drainage stored in the drainage tank tended to increase in FR 1.0. Although such trend was not observed in FR 2.0 and MR, the volume of drainage stored in MR was lower than that in FR 2.0. The ion balance of $Mg^{2+}:K^+:Ca^{2+}$ or $SO^{2-}_4:NO^-_3:PO^{3-}_4$ in the drainage and reused nutrient solution changed within a narrow range regardless of treatment.

순환식 수경재배에서 배액의 EC, 부피, 관수량은 재사용 양액의 혼합비율을 결정하는 중요한 요소 중 하나이다. 적산 일사량 제어법으로 관수할 경우 일일 관수량의 예측은 곤란하며 일반적으로 고정된 혼합비율을 사용한다. 이 경우 새 양액이 고정적으로 투입되어 양분의 조정 효과가 기대되지만, 때때로 배액의 강제배출을 필요로 한다. 본 연구는 적산 일사량 제어법으로 관수하는 순환식 수경재배 조건에서 배액의 혼합비를 고정한 처리구(FR)와 정해진 혼합 용량 내에서 배액의 부피와 EC에 따라 혼합비를 변경하는 처리구(MR)의 재사용 양액 내 양분 조정효과를 비교하여 양수분 이용효율이 높은 혼합방식의 규명에 기여하고자 수행하였다. 배액의 농도 변화를 비교하기 위한 대조구로는 비순환식 수경재배 처리구(OP)를 구성하였다. FR처리구의 배액 혼합 비율은 배액의 희석 EC를 각각1.0, $2.0dS{\cdot}m^{-1}$로 설정하여 혼합처리를 적용하였다. MR 처리구의 경우는 혼합 용량을 1회 관수량을 기준으로 배액의 EC와 부피에 따라 혼합비율이 변경되도록 하였다. 배액의 누적 현상은 FR 1.0 처리구에서 관찰되었으며, FR 2.0과 MR 처리구에서는 배액 누적현상이 나타나지는 않았으나 MR 처리구의 배액 저장량이 FR 2.0 처리구에 비해서 낮게 나타났다. 배액과 재사용 양액 내 $Mg^{2+}:K^+:Ca^{2+}$$SO^{2-}_4:NO^-_3:PO^{3-}_4$의 당량 농도 간 비율 변화는 FR, MR 처리구에서 초기비율 대비 비교적 좁은 변화 범위를 나타냈다.

Keywords

References

  1. Ahn, T.I., J.H. Shin, and J.E. Son. 2010. Analysis of changes in ion concentration with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Fiesta'). J. Bio-Environment Control 19:298-304 (in Korean).
  2. Bratov, A., N. Abramova, and A. Ipatov. 2010. Recent trends in potentiometric sensor arrays-A review. Anal. Chim. Acta 678:149-159. https://doi.org/10.1016/j.aca.2010.08.035
  3. Darder, M., A. Valera, E. Nieto, M. Colilla, C.J. Fernandez, R. Romero-Aranda, J. Cuartero, and E. Ruiz-Hitzky. 2009. Multisensor device based on Case-Based Reasoning (CBR) for monitoring nutrient solutions in fertigation. Sens. Actuator B-Chem. 135:530-536. https://doi.org/10.1016/j.snb.2008.09.034
  4. Ehret, D.L., J.G. Menzies, and T. Helmer. 2005. Production and quality of greenhouse roses in recirculating nutrient systems. Sci. Hort. 106:103-113. https://doi.org/10.1016/j.scienta.2005.03.002
  5. Gutierrez, M., S. Alegret, R. Caceres, J. Casadesus, O. Marfa, and M. Del Valle. 2008. Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J. Agr. Food. Chem. 56:1810-1817. https://doi.org/10.1021/jf073438s
  6. Hao, X. and A.P. Papadopoulos. 2002. Growth, photosynthesis and productivity of greenhouse tomato cultivated in open or closed rockwool systems. Can. J. Plant Sci. 82:771-780. https://doi.org/10.4141/P01-113
  7. Le Bot, J., S. Adamowicz, and P. Robin. 1998. Modelling plant nutrition of horticultural crops: a review. Sci. Hort. 74:47-82. https://doi.org/10.1016/S0304-4238(98)00082-X
  8. Noordwijk, V.M. 1990. Synchronisation of supply and demand is necessary to increase efficiency of nutrient use in soilless horticulture. Plant nutrition physiology and applications, Kluwer Academic Publishers: Dordrecht, The Netherland.
  9. Raviv, M., A. Krasnovsky, S. Medina, and R. Reuveni. 1998. Assessment of various control strategies for recirculation of greenhouse effluents under semi-arid conditions. J. Hort. Sci. Biotechnol. 73:485-491.
  10. Savvas, D. 2002. Automated replenishment of recycled greenhouse effluents with individual nutrients in hydroponics by means of two alternative models. Biosyst. Eng. 83:225-236. https://doi.org/10.1006/bioe.2002.0106
  11. Savvas, D. and G. Manos. 1999. Automated composition control of nutrient solution in closed soilless culture systems. J. Agr. Eng. Res. 73:29-33. https://doi.org/10.1006/jaer.1998.0389
  12. Steiner, A.A. 1980. The selective capacity of plants for ions and its importance for the composition and treatment of the nutrient solution. Act. Hort. 98:87-97.
  13. Tai, N.H., J.S. Park, T.I. Ahn, J.H. Lee, D.J. Myoung, Y.Y. Cho, and J.E. Son. 2010. Analysis of relationship among growth, environmental factors and transpiration in soilless culture of paprika plants. Kor. J. Hort. Sci. Technol. 28:59-64 (in Korean).
  14. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J. Am. Soc. Hort. Sci. 121:1082-1088.