Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.11.1517

Single Channel Analysis of Xenopus Connexin 38 Hemichannel  

Cheon, Mi-Saek (Department of Physiology, College of Medicine, Dankook University)
Oh, Seung-Hoon (Department of Physiology, College of Medicine, Dankook University)
Publication Information
Journal of Life Science / v.17, no.11, 2007 , pp. 1517-1522 More about this Journal
Abstract
Gap junction channels formed by two adjacent cells allow the passage of small molecules up to ${\sim}\;1\;kDa$ between them. Hemichannel (connexon or half of gap junction) also behaves as a membrane channel like sodium or potassium channels in a single cell membrane. Among 26 types of connexin (Cx), $Cx32^*43E1$ (a chimera in which the first extracellular loop of Cx32 has been replaced with that of Cx43), Cx38, Cx46, and Cx50 form functional hemichannels as well as gap junction channels. Although it is known that Xenopus oocytes express endogenous connexin 38 (Cx38), its biophysical characteristics at single channel level are poorly understood. In this study, we performed single channel recordings from single Xenopus oocytes to acquire the biophysical properties of Cx38 including voltage-dependent gating and permeation (conductance and selectivity). The voltage-dependent fast and slow gatings of Cx38 hemichannel are distinct. Fast gating events occur at positive potentials and their open probabilities are low. In contrast, slow gatings dominate at negative potentials with high open probabilites. Based on hi-ionic experiments, Cx38 hemichannel is anion-selective. It will be interesting to test whether charged amino acid residues in the amino terminus of Cx38 are responsible for voltage gatings and permeation.
Keywords
Gap junction; connexin; hemichannel; voltage gating; selectivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Oh, S., S. Rivkin, Q. Tang, V. K. Verselis and T. A. Bargiello. 2004. Determinants of gating polarity of a connexin 32 hemichannel. Biophys. J. 87, 912-928   DOI   ScienceOn
2 Oh, S., J. B. Rubin, M. V. L. Bennett, V. K. Verselis and T. A. Bargiello. 1999. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexin 26 and 32. J. Gen. Physiol. 114, 339-364.   DOI   ScienceOn
3 Brink, P. R. and M. M. Dewey. 1980. Evidence for fixed charge in the nexus. Nature 285, 101-202.   DOI   ScienceOn
4 Bukauskas, F. F., A. Bukauskiene and V. K. Verselis. 2002. Conductance and permeability of the residual state of connexin43 gap junction channels. J. Gen. Physiol. 119, 171-186.   DOI   ScienceOn
5 Pfahnl, A., X. W. Zhou, R. Werner and G. Dahl. 1997. A chimeric connexin forming gap junction hemichannels. Pflugers Arch. 433, 773-779.   DOI   ScienceOn
6 Rubin, J. B., V. K. Verselis, M. V. Bennett and T. A. Bargiello. 1992. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc. Natl. Acad. Sci. USA 89, 3820-3824.   DOI   ScienceOn
7 Rubin, J. B., V. K. Verselis, M. V. Bennett and T. A. Bargiello. 1992. Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys. J. 62, 183-193.   DOI   ScienceOn
8 Trexler, E. B., M. V. Bennett, T. A. Bargiello and V. K. Verselis. 1996. Voltage gating and permeation in a gap junction hemichannel. Proc. Natl. Acad. Sci. USA 93, 5836-5841.   DOI
9 Verselis, V. K., C. S. Ginter and T. A. Bargiello. 1994. Opposite voltage gating polarities of two closely related connexins. Nature 368, 348-351   DOI   ScienceOn
10 Waltzman, M. N. and D. C. Spray. 1995. Exogenous expression of connexins for physiological characterisation of channel properties: Comparison of methods and results, pp. 9-17, In Kanno, Y., K. Kataoka, Y. Shiba, Y. Shibata and T. Shimazu (eds.), International Communication Through Gap Junctions: Progress in Cell Research, Vol. 4, Elsevier, Amsterdam.
11 Yim, J., M. Cheon, J. Jung and S. Oh. 2006. Effect of amino terminus of gap junction hemichannel on its channel gating. J. Life Sci. 16, 37-43.   과학기술학회마을   DOI   ScienceOn
12 Ebihara, L. 1996. Xenopus connexin38 forms hemi-gapjunctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys. J. 71, 742-748.   DOI   ScienceOn
13 Ebihara, L., E. C. Beyer, K. I. Swenson, D. L. Paul and D. A. Goodenough. 1989. Cloning and expression of a Xenopus embryonic gap junction protein. Science 243, 1194-1195.   DOI
14 Eisenman, G. and R. Horn. 1983. Ionic selectivity revisited: the role of kinetic and equillibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197-225.   DOI
15 Gimlich, R. L., N. M. Kumar and N. B. Gilula. 1990. Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J. Cell Biol. 110, 597-605.   DOI   ScienceOn
16 Harris, A. L. 2001. Emerging issues of connexin channels: Biophysics fills the gap. Q. Rev. Biophys. 34, 325-472.
17 Oh, S., C. K. Abrams, V. K. Verselis and T. A. Bargiello. 2000. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J. Gen. Physiol. 116, 13-31.   DOI   ScienceOn
18 Oh, S., Y. Ri, M. V. Bennett, E. B. Trexler, V. K. Verselis and T. A. Bargiello. 1997. Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot- Marie-Tooth disease. Neuron 19, 927-938.   DOI   ScienceOn