DOI QR코드

DOI QR Code

Quasi-nonvolatile Memory Characteristics of Silicon Nanosheet Feedback Field-effect Transistors

실리콘 나노시트 피드백 전계효과 트랜지스터의 준비휘발성 메모리 특성 연구

  • Seungho Ryu (Dept. of Semiconductor System Engineering, Korea University) ;
  • Hyojoo Heo (Dept. of Electrical Engineering, Korea University) ;
  • Kyoungah Cho (Dept. of Electrical Engineering, Korea University) ;
  • Sangsig Kim (Dept. of Semiconductor System Engineering, Korea University)
  • Received : 2023.09.25
  • Accepted : 2023.10.24
  • Published : 2023.12.31

Abstract

In this study, we examined the quasi-nonvolatile memory characteristics of silicon nanosheet (SiNS) feedback field-effect transistors (FBFETs) fabricated using a complementary metal-oxide-semiconductor process. The SiNS channel layers fabricated by photoresist overexposure method had a width of approximately 180 nm and a height of 70 nm. The SiNS FBFETs operated in a positive feedback loop mechanism and exhibited an extremely low subthreshold swing of 1.1 mV/dec and a high ON/OFF current ratio of 2.4×107. Moreover, SiNS FBFETs represented long retention time of 50 seconds, indicating the quasi-nonvolatile memory characteristics.

본 연구에서는 기존 상보성 금속 산화막 반도체 공정을 활용하여 제작된 실리콘 나노시트(SiNS) 피드백 전계효과 트랜지스터(FBFET)의 준비휘발성 메모리 특성을 분석하였다. 과노광공정을 이용하여 형성된 SiNS 채널층의 폭은 180 nm이고 높이는 70 nm이었다. 양성 피드백 루프를 기반으로 동작하는 SiNS FBFET의 낮은 문턱전압이하 기울기는 1.1 mV/dec, ON/OFF 전류비는 2.4×107이었다. 또한 SiNS FBFET는 50 초 동안 상태를 유지하는 메모리 특성을 보여 준휘발성메모리 소자로 활용 가능성을 제시하였다.

Keywords

Acknowledgement

This study was partly supported by the Brain Korea 21 Plus Project, a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2020R1A2C3004538), and a Korea University Grant.

References

  1. S. Mittal, "A survey of ReRAM-based architectures for processing-in-memory and neural networks," Machine learning and knowledge extraction, vol.1, no.1, pp.75-114, 2018. DOI: 10.3390/make1010005 
  2. T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal and M. J. Marinella, "Analog architectures for neural network acceleration based on nonvolatile memory,"plied Physics Reviews, vol.7, no.3, 2020. DOI: 10.3390/make1010005 
  3. J. Oh and Y. Yu, "Investigation of monolithic 3D integrated circuit inverter with feedback field effect transistors using TCAD simulation," Micro-machines, vol.11, no.9, p.852, 2020. DOI: 10.3390/mi11090852 
  4. E. Baek, K. Cho and S. Kim, "Universal logic-in-memory cell enabling all basic Boolean algebra logic," Scientific reports, vol.12, no1, pp.20082, 2022. DOI: 10.1038/s41598-022-24582-y 
  5. M. Kim, Y. Kim, D. Lim, S. Woo, K. Cho and S. Kim, "Steep switching characteristics of single-gated feedback field-effect transistors," Nanotechnology, vol.28, no.5, pp.055205, 2016. DOI: 10.1088/1361-6528/28/5/055205 
  6. J. Cho, D. Lim, S. Woo, K. Cho and S. Kim, "Static random access memory characteristics of single-gated feedback field-effect transistors," IEEE Transactions on Electron Devices, vol.66, no.1, pp.413-419, 2018. DOI: 10.1109/TED.2018.2802946 
  7. D. Lim, J. Son, K. Cho and S. Kim, "Quasi-nonvolatile silicon memory device," Advanced Materials Technologies, vol.5, no.12, pp.2000915, 2020. DOI: 10.1002/admt.202000915 
  8. J. Jeon, S. Woo, K. Cho, and S. Kim, "Logic and memory functions of an inverter comprising reconfigurable double gated feedback field effect transistors," Scientific reports, vol.12, no.1, pp. 12534, 2022. DOI: 10.1038/s41598-022-16796-x 
  9. Y. Lee, G. Park, B. Choi, J. Yoon, H. Kim, D. Kim, D. Kim, M. Kang and S. Choi, "Design study of the gate-all-around silicon nanosheet MOSFETs," Semiconductor Science and Technology, vol.35, no.3, pp.03LT01, 2020. DOI: 10.1088/1361-6641/ab6bab 
  10. F. Zhao, X. Jia, H. Luo, J. Zhang, X. MAO, Y. Li, J. Luo, W. Wang and Y. Li, "Hybrid integrated Si nanosheet GAA-FET and stacked SiGe/Si FinFET using selective channel release strategy," Microelectronic Engineering, vol.275, pp,1993, 2023. DOI: 10.1016/j.mee.2023.111993 
  11. R. M. Y. Ng, T. Wang, F. Liu, X. Zuo, J. He and M. Chan, "Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation," IEEE electron device letters, vol.30, no.5, pp.520-522, 2009. DOI: 10.1109/LED.2009.2014975 
  12. D. Moon, S. Choi, J. Duarte and Y. Choi, "Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate," IEEE transactions on electron devices, vol.60, no.4, pp.1355-1360, 2013. DOI: 10.1109/TED.2013.2247763 
  13. C. T. Black, "Self-aligned self assembly of multi-nanowire silicon field effect transistors," Applied Physics Letters, vol.87, no.16, 2005. DOI: /10.1063/1.2112191 
  14. F. H. Dill, W. P. Hornberger, P. S. Hauge and J. M. Shaw, "Characterization of positive photoresist," IEEE Transactions on electron devices, vol.22, no.7, pp.445-452, 1975. DOI: 10.1109/T-ED.1975.18159 
  15. Y. Luo and V. Misra, "Large-area long-range ordered anisotropic magnetic nanostructure fabrication by photolithography," Nanotechnology, vol.7, no.19, pp.909, 2006. DOI: 10.1088/0957-4484/17/19/021 
  16. T. Adam and U. Hashim, "The effect of exposure time and development time on photoresist thin film in Micro/Nano structure formation," 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), pp.107-110. 2012. DOI: 10.1109/SMElec.2012.6417102 
  17. D. B. Miller, D. L. Forman, A. M. Jones, and R. R. McLeod, "Super-resolved critical dimensions in far-field I-line photolithography," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.18, no.1, pp.013505-013505, 2019. DOI: 10.1117/1.JMM.18.1.013505 
  18. Y. Shin, J. Son, J. Jeon, K. Cho and S. Kim, "Logic-In-Memory Characteristics of Reconfigurable Feedback Field-Effect Transistors with Double-Gated Structure," Advanced Electronic Materials, pp.2300132, 2023. DOI: 10.1002/aelm.202300132