• Title/Summary/Keyword: Open circuit

Search Result 1,169, Processing Time 0.028 seconds

Triple Junction GAGET2-ID2 Solar Cell Degradation by Solar Proton Events (태양 양성자 이벤트에 의한 삼중 접합 GAGET2-ID2 태양전지 열화)

  • Koo, Ja-Chun;Park, Jung-Eon;Moon, Gun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1019-1025
    • /
    • 2021
  • In nearly all space environments, the solar cell degradation is dominated by protons[1]. Even through a GEO orbit lines in the electron radiation belts, the protons emitted from any solar event will still dominate the degradation[1]. Since COMS launch on June 26 2010, the proton events with the fluence of more than approximately 30 times the average level of perennial observations were observed between January 23 - 29 2012 and March 07 - 14 2012[16]. This paper studies the solar cell degradation by solar proton events in January and March 2012 for the open circuit voltage(Voc) of a witness cell and the short circuit current(Isc) of a section connected to a shunt switch. To evaluate the performance of solar cell, the flight data of voltage and current are corrected to the temperature, the Earth-Sun distance and the Sun angle and then compare with the solar cell characteristics at BOL. The Voc voltage dropped about 23.6mV compare after the March 2012 proton events to before the January 2012 proton events. The Voc voltage dropped less than 1% at BOL, which is 2575mV. The Isc current decreased negligible, as expected, in the March 2012 proton events.

Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof (열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성)

  • Im, Chae-Nam;Yu, Hye-Ryeon;Yoon, HyunKi;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.398-406
    • /
    • 2022
  • In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials (비납계 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 압전 나노소재를 이용한 복합체 필름 기반의 플렉서블 에너지 하베스터 개발)

  • Gwang Hyeon Kim;Hyeon Jun Park;Bitna Bae;Haksu Jang;Cheol Min Kim;Donghun Lee;Kwi-Il Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and self-powered devices owing to their excellent mechanical durability and output performance. In this study, we design a lead-free piezoelectric nanocomposite utilizing (Ba0.85 Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solid-state reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 ㎂, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.

The Effects of Artificial Dead Space on the Pulmonary Ventilation of Intubated Children with Mechanical Ventilation (기관 삽관후 인공호흡기를 적용한 개심술 환아의 인공기도 체외 용적이 폐환기 상태에 미치는 영향)

  • 유정숙;윤선희;송계희;민열하
    • Journal of Korean Academy of Nursing
    • /
    • v.31 no.1
    • /
    • pp.31-42
    • /
    • 2001
  • This study was done to evaluate the effect reducing artificial dead space on intubated children. Data were collected from July 1st, 1998 to August 31st, 1999. The subjects were selected from a pediatric intensive care unit of 'S' hospital and intubated with 3.5 mm or 4.5 mm endotracheal tube after open heart surgery. They were composed of 34 patients : 17 patients were assigned to the experimental group and the rest of them were placed in the control group. The artificial airway volume was minimized in the experimental group, and the control group maintained the artificial airway volume. ETCO2, PaCO2, SPO2 were measured as indicators of pulmonary ventilation. The tools of this study were GEM-Premier and Space-Lab patient monitors. The data were analyzed using the SPSS/PC+ program. The $\chi$2 -test was used to find general characteristics. The t-test was used to test the homogenety of the pulmonary ventilation status and mechanical ventilation setting before intervention between the two groups. Also, the paired t-test was used to examine the hypothesis. The results can be summerized as : 1. CO2 can be expelled effectively from the body in case artificial dead space was decreased. 2. As the artificial dead space was reduced, the difference between ETCO2 and PaCO2 was decreased, in other words pulmonary ventilation was improved. 3. If the artificial dead space occupied above 15 percent of tidal volume, the effect of CO2 was retention revealed in the body. 4. If the artificial dead space occupied below effect. Based on the results, the following is suggested to be applied practically : 1. A kind of the ventilator circuit acting artificial dead space should be removed from the intubated children with mechanical ventilaion. 2. The endotracheal tube should not be cut because extra-body space of the endotracheal tube did not have an effect on the dead space of the intubated children. Since the researcher could not cover this aspect in the study, they recommend the following. 1. The study should be extended to the other pulmonary disease patients for the effect of improving pulmonary ventilation. 2. Also, further studying with a more narrow interval in the extra-body space of the artificial airway will be able to explain the point of artificial dead space with proper ventilation.

  • PDF

An Extended Scan Path Architecture Based on IEEE 1149.1 (IEEE 1149.1을 이용한 확장된 스캔 경로 구조)

  • Son, U-Jeong;Yun, Tae-Jin;An, Gwang-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1924-1937
    • /
    • 1996
  • In this paper, we propose a ESP(Extended Scan Path) architecture for multi- board testing. The conventional architectures for board testing are single scan path and multi-scan path. In the single scan path architecture, the scan path for test data is just one chain. If the scan path is faulty due to short or open, the test data is not valid. In the multi-scan path architecture, there are additional signals in multi-board testing. So conventional architectures are not adopted to multi-board testing. In the case of the ESP architecture, even though scan paths either short or open, it doesn't affect remaining other scan paths. As a result of executing parallel BIST and IEEE 1149.1 boundary scan test by using, he proposed ESP architecture, we observed to the test time is short compared with the single scan path architecture. Because the ESP architecture uses the common bus, there are not additional signals in multi-board testing. By comparing the ESP architecture with conventional one using ISCAS '85 bench mark circuit, we showed that the architecture has improved results.

  • PDF

Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells (가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작)

  • Cho, Jung Min;Jo, Jeongdai;Kim, Taeil;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.993-998
    • /
    • 2014
  • Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).

Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells (고체 산화물 연료전지를 위한 물성치 및 전기화학반응의 수치해석 모델링)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.157-163
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) are commonly composed of ceramic compartments, and it is known that the physical properties of the ceramic materials can be changed according to the operating temperature. Thus, the physical properties of the ceramic materials have to be properly predicted to develop a highly reliable simulation model. In this study, several physical properties that can affect the performance of SOFCs were selected, and simulation models for those physical properties were developed using our own code. The Gibbs free energy for the open circuit voltage, exchange current densities for the activation polarization, and electrical conductivity for the electrolyte were calculated. In addition, the diffusion coefficient-including the binary and Knudsen diffusion mechanisms-was calculated for mass transport analysis at the porous electrode. The physical property and electrochemical reaction models were then simulated simultaneously. The numerical results were compared with the experimental results and previous works studied by Chan et al. for code validation.

The Weekly and Daily Energy Expenditure and Nutrition Survey on the Republic of Bores Army Cadets (육군 사관생도의 에너지소비량 및 영양섭취량에 관한 연구)

  • Cho, T.H.
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.121-130
    • /
    • 1967
  • Determination of weekly and daily energy expenditure was made on 62 Republic of Korea Army cadets who were selected at random in order to estimate the weekly and daily ealorie expenditure. Basal metabolic rate (B.M.R.), and energy cost of various military and daily activities were measured by indirect calorimetry using open circuit method. Time-motion studies were also carried on using a stop-watch. The total weekly energy expenditure was calculated by summation of data using energy cost per minute, and the time spent on each activity. Determination of daily energy expenditure was deduced from each data of weekly energy expenditure. Food survey was also carried on for a week, and daily calorie intake was determined by a weekly average discounting loss in cooking. All measurements were determined from the Standard Table of Food Composition published by the Ministry of National Defense (1961). Following data were observed. 1. Physical status of cadets are as follows. Please note that the height and weight averages are 1-2cm and 4-5kg respectively over that of the Seoul National University students. First year Height 167.92 cm $(S.D.{\pm}4.09)$ Weight 61.72 kg $(S.D.{\pm}4.53)$ Second year Height 167.89 cm $(S.D.{\pm}3.46)$ Weight 63.01 kg $(S.D.{\pm}4.61)$ Third year Height 168.15 cm $(S.D.{\pm}4.24)$ Weight 43.48 kg $(S.D.{\pm}5.03)$ Fourth year Height 168.10 cm $(S.D.{\pm}3.70)$ Weight 64.02kg $(S.D.{\pm}5.10)$ 2. The B.M.R. of cadets averaged $36.57\;Cal./m^2/hr.(S.D.{\pm}3.63\;Cal./m^2/hr.)$ is almost equal with data on the same ages of civilians and the Japanese, but a lower average of $5.1\;Cal./m^2/hr.$ than that of a common soldier. 3. The energy expenditure during various military activities is close agreement with Consolazio. Passmore and Durnin, and Japanese reports.

  • PDF

Battery State of Charge Estimation Considering the Battery Aging (배터리의 노화 상태를 고려한 배터리 SOC 추정)

  • Lee, Seung-Ho;Park, Min-Kee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.298-304
    • /
    • 2014
  • Proper operation of the battery powered systems depends on the accuracy of the battery SOC(State of Charge) estimation, therefore it is critical for those systems that SOC is accurately determined. The SOC of the battery is related to the battery aging and the SOC estimation methods without considering the aging of the battery are not accurate. In this paper, a new method that accurately estimate the SOC of the battery is proposed considering the aging of the battery. A mathematical model for the Battery SOC-OCV(Open Circuit Voltage) relationship is presented using Boltzmann equation and aging indicator is defined, and then the SOC is estimated combining the mathematical model and aging indicator. The proposed method takes the aging of the battery into consideration, which leads to an accurate estimation of the SOC. The simulations and experiments show the effectiveness of the proposed method for improving the accuracy of the SOC estimation.

Cable Functional Failure Temperature Evaluation of Cable Exposed to the Fire of Nuclear Power Plant (원자력발전소 케이블 노출 화재 시 기능상실온도 분석)

  • Lim, Hyuk-Soon;Bae, Yeon-Kyoung;Chi, Moon-Goo
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • The fire event occurred in fire proof zone often causes serious electrical problems such as shorts, ground faults, or open circuits in nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety related systems and equipments. The fire event can treat the basic design principle that safety systems should keep their functions with redundancy and independency. In case of a cable fire, operators can not perform their mission properly and can misjudge the situation because of spurious operation, wrong indication or instrument. These would deteriorate the plant capabilities of safety shutdown and make disastrous conditions. In this paper, investigation and cause analysis of cable fire in Nuclear Power Plant, we described the cable fire temperature and functional failure criteria and the cable functional failure temperature evaluation by exposed fire is studied.