• Title/Summary/Keyword: Open Reading Frame

Search Result 698, Processing Time 0.026 seconds

Process Optimization for Concentration and Stabilization of Recombinant Endoxylanase Expressed in Bacillus subtilis (Bacillus subtilis에서 발현된 재조합 Endoxylanase 농축과 안정화 공정의 최적화)

  • Choe, Yeong-Rok;Park, Jeong-Ha;;Kim, Yeong-Man;Gwon, Hyeon-Ju;Kim, Byeong-U
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.322-327
    • /
    • 2004
  • A strong constitutive PJH promoter from Bacillus sp. was applied to overexpress the endoxylanase gene (639 bp) in Bacillus subtilis. The expression plasmid, pJHKJ4, was designed to contain the $P_{JH}$ promoter and open reading frame of endoxylanase including its own promoter. The plasmid was introduced into B. subtilis DB431 and the resulting transformant was grown on LB glucose medium. At the end of cultivation, the endoxylanase activity in the culture supernatant reached about 140 DIm!. The enzyme in the supernatant was concentrated by ultrafiltration (MW cut-off 10 kDa and 30 kDa) and ammonium sulfate precipitation. For the concentration of the enzyme, ultrafiltration was more efficient than 70% ammonium sulfate precipitation. The stabilization of concentrated enzyme solution at $50^{\circ}C$ was examined with various stabilizers such as NaCI, glycerol, polyethylene glycol, sorbitol, and $CaCI_2$. The most effective stabilizers were found to be NaCI and $CaCI_2$.

Cloning and Sequence Analysis of the Full-length cDNA of Coxsackievirus B3 Isolated in Korea (한국에서 분리된 콕사키 바이러스 B3 cDNA의 클로닝 및 전체 염기서열 분석)

  • Chung, Yoon-Seok;Kim, Ki-Soon;Park, Jeong-Koo;Lee, Yoon-Sung;Shin, Soo-Youn;Cheon, Doo-Seong;Jee, Young-Mee;Kim, Moon-Bo;Na, Byoung-Kuk;Yoon, Jae-Deuk;Lee, Kwang-Ho;Song, Chul-Yong
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.1
    • /
    • pp.71-81
    • /
    • 2000
  • We have determined and analyzed the full-length cDNA sequence of a coxsackievirus B3 (CVB3) Korean isolate (CVB3-Korea/97) which has been known as a general human pathogen. The whole genome contains 7,400 nucleotides and has a single large open reading frame with 6,555 nucleotides that encodes a potential polyprotein precursor of 2,185 amino acids. The genome also contains a 5' non-coding region (NCR) of 741 bases and a 3' NCR of 104 bases followed by poly(A) tail. Sequence homologies of nucleotides and deduced amino acids between the CVB3-Korea/97 strain and the prototype (Nancy strain) were 81.7% and 91.5%, respectively. The genes encoding the functional proteins including viral protease and RNA dependent RNA polymerase showed higher homology than those encoding the structural proteins. We have further analyzed the sequences of 5' NCR, VP1 and VP2 of CVB3-Korea/97, which are known as cardiovirulent determining factors at the nucleotide and amino acid levels. Although the CVB 3-Korea/97 strain was isolated from an aseptic meningitis patient without cardiomyopathy, its 234th nucleotide and 165th amino acid were uracil and Asn as same as those of other cardiovirulent strains one. However, the 155th amino acid of VP1, which closely associated with cardiovirulence, was replaced with $Arg^{155}$ by single nucleotide substitution from $A^{2916}$ to $T^{2916}$. Moreover, additional amino acid substitutions were observed in the flanking region of $Asp^{155}$. Taken together, amino acid(s) substitution in VP1 may playa critical role in determining cardiovirulence of the CVB3-Korea/97 strain rather than individual nucleotide replacements in the 5' NCR and/or an amino acid substitution in VP2.

  • PDF

Gene Cloning, Expression and Immunogenicity of the Protective Antigen Subolesin in Dermacentor silvarum

  • Hu, Yonghong;Zeng, Hua;Zhang, Jincheng;Wang, Duo;Li, Dongming;Zhang, Tiantian;Yang, Shujie;Liu, Jingze
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • Subolesin (4D8), the ortholog of insect akirins, is a highly conserved protective antigen and thus has the potential for development of a broad-spectrum vaccine against ticks and mosquitoes. To date, no protective antigens have been characterized nor tested as candidate vaccines against Dermacentor silvarum bites and transmission of associated pathogens. In this study, we cloned the open reading frame (ORF) of D. silvarum 4D8 cDNA (Ds4D8), which consisted of 498 bp encoding 165 amino acid residues. The results of sequence alignments and phylogenetic analysis demonstrated that D. silvarum 4D8 (Ds4D8) is highly conserved showing more than 81% identity of amino acid sequences with those of other hard ticks. Additionally, Ds4D8 containing restriction sites was ligated into the pET-32(a+) expression vector and the recombinant plasmid was transformed into Escherichia coli rosetta. The recombinant Ds4D8 (rDs4D8) was induced by isopropyl ${\beta}$-D-thiogalactopyranoside (IPTG) and purified using Ni affinity chromatography. The SDS-PAGE results showed that the molecular weight of rDs4D8 was 40 kDa, which was consistent with the expected molecular mass considering 22 kDa histidine-tagged thioredoxin (TRX) protein from the expression vector. Western blot results showed that rabbit anti-D. silvarum serum recognized the expressed rDs4D8, suggesting an immune response against rDs4D8. These results provided the basis for developing a candidate vaccine against D. silvarum ticks and transmission of associated pathogens.

Isolation and Identification of a New Gene Related to Salt Tolerance in Chinese Cabbage (배추에서 신규 염 저항성 관련 유전자 분리 및 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.748-755
    • /
    • 2013
  • This study was conducted to find a salt tolerance gene in Brassica rapa. In order to meet this objective, we analyzed data from a KBGP-24K oligo chip [BrEMD (Brassica rapa EST and microarray database)] of the B. rapa ssp. pekinensis 'Chiifu' under salt stress (250 mM NaCl). From the B. rapa KBGP-24K microarray chip analysis, 202 salt-responsive unigenes were primarily selected under salt stress. Of these, a gene with unknown function but known full-length sequence was chosen to closely investigate the gene function. The selected gene was named BrSSR (B. rapa salt stress resistance). BrSSR contains a 285 bp open reading frame encoding a putative 94-amino acid protein, and a DUF581 domain. The pSL94 vector was designed to over-express BrSSR, and was used to transform tobacco plants for salt tolerance analysis. T1 transgenic tobacco plants that over-expressed BrSSR were selected by PCR and DNA blot analyses. Quantitative real-time RT PCR revealed that the expression of BrSSR in transgenic tobacco plants increased by approximately 3.8-fold. Similar results were obtained by RNA blot analysis. Phenotypic characteristics analysis showed that transgenic tobacco plants with over-expressed BrSSR were more salt-tolerant than the wild type control under 250 mM NaCl for 5 days. Based on these results, we hypothesized that the over-expression of BrSSR may be closely related to the enhancement of salt tolerance.

Study on Norovirus Genotypes in Busan, Korea (부산지역에서 분리된 norovirus 유전자형 연구)

  • Kim, Nam-Ho;Park, Eun-Hee;Park, Yon-Koung;Min, Sang-Kee;Jin, Seong-Hyeon;Park, So-Hyun
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.845-850
    • /
    • 2011
  • Norovirus (NoV) causes major acute non-bacterial gastroenteritis in humans. NoV genus is a member of the family Caliciviridae, which is transmitted by contaminated food and water or from human to human. Many genotypes of genogroups I and II have been reported because of their high genetic diversity. To obtain molecular epidemiological information on gastroenteritis sporadic cases in Busan, Korea, we analyzed the nucleotide sequences of NoV strains detected during 2008~2010. We performed one step RT-PCR amplifying the open reading frame (ORF) 2 (capsid region) followed by semi-nested PCR. Fecal samples were collected from 4,071 acute gastroenteritis, and genotypes of the 421 positive samples were determined by sequence analysis. Based on partial sequence of capsid region, 7 NoV were categorized into genogroup I and 13 into genogroup II. Prevalent genotypes among gastroenteritis patients within Busan were GII.4, GI.6, GII.5 in 2008~2010. The results of this study will contribute to the currently available epidemiological data and improve public health and hygiene via development of diagnostic methods and sustainable surveillance.

Molecular Characterization and Expression Analysis of Peroxiredoxin 2 cDNA from Abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1291-1300
    • /
    • 2014
  • Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that participate in a variety of biological processes, including $H_2O_2$-mediated signal transduction, molecular chaperoning, and mitochondrial function. In this study, we isolated and characterized a Prx 2 cDNA from abalone (Haliotis discus hannai). The abalone Prx 2 cDNA encoded a 199-amino acid polypeptide that belongs to a class of typical 2-Cys Prxs that contain peroxidatic and resolving cysteines. The deduced abalone Prx 2 protein showed strong homology (64-99%) with Prx 2 proteins from other species, including mollusk, fish, amphibians, and mammals, and it was most closely related to disk abalone (H. discus discus) Prx 2. Abalone Prx 2 mRNA was ubiquitously detected in tested tissues, and its expression was comparatively high in the mantle, gills, liver, foot, and digestive duct. The expression level of abalone Prx 2 mRNA was 106.7-fold, 51.9-fold, and 437.8-fold higher, respectively, in the gills, digestive duct, and liver than in the muscles. The expression level of abalone Prx 2 mRNA in the liver peaked at 6 hr postinfection with Vibrio parahemolyticus and decreased at 12 hr postinfection. The expression level of abalone Prx 2 mRNA in hemocytes was drastically increased at 1 hr postinfection with V. parahemolyticus. These results suggest that abalone Prx 2 is conserved through evolution and that it may play a role similar to that of its mammalian counterpart.

Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV

  • Pak, Jung-Hun;Chung, Eun-Sook;Shin, Sang-Hyun;Jeon, Eun-Hee;Kim, Mi-Jin;Lee, Hye-Young;Jeung, Ji-Ung;Hyung, Nam-In;Lee, Jai-Heon;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Oryza grandiglumis Chitinase IVa (OgChitIVa) cDNA encoding a class IV chitinase was cloned from wild rice (Oryza grandiglumis). OgChitIVa cDNA contains an open reading frame of 867 nucleotides encoding 288 amino acid residues with a predicted molecular weight of 30.4 kDa and isoelectric point of 8.48. Deduced amino acid sequences of OgChitIVa include the signal peptide and chitin-binding domain in the N-terminal domain and conserved catalytic domain. OgChitIVa showed significant similarity at the amino acid level with related monocotyledonous rice and maize chitinase, but low similarity with dicotyledoneous chitinase. Southern blot analysis showed that OgChitIVa genes are present as two copies in the wild rice genome. It was shown that RNA expression of OgChitIVa was induced by defense/stress signaling chemicals, such as jasmonic acid, salicylic acid, and ethephon or cantharidin and endothall or wounding, and yeast extract. It was demonstrated that overexpression of OgChitIVa in Arabidopsis resulted in mild resistance against the fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. RT-PCR analysis showed that PR-1 and PR-2 RNA expression was induced in the transgenic lines. Here, we suggest that a novel OgChitIVa gene may play a role in signal transduction process in defense response against B. cinerea in plants.

Comparative Genomics Profiling of Clinical Isolates of Helicobacter pylori in Chinese Populations Using DNA Microarray

  • Han, Yue-Hua;Liu, Wen-Zhong;Shi, Yao-Zhou;Lu, Li-Qiong;Xiao, Shudong;Zhang, Qing-Hua;Zhao, Guo-Ping
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • In order to search for specific genotypes related to this unique phenotype, we used whole genomic DNA microarray to characterize the genomic diversity of Helicobacter pylori (H. pylori) strains isolated from clinical patients in China. The open reading frame (ORF) fragments on our microarray were generated by PCR using gene-specific primers. Genomic DNA of H. pylori 26695 and J99 were used as templates. Thirty-four H. pylori isolates were obtained from patients in Shanghai. Results were judged based on In(x) transformed and normalized Cy3/Cy5 ratios. Our microarray included 1882 DNA fragments corresponding to 1636 ORFs of both sequenced H. pylori strains. Cluster analysis, revealed two diverse regions in the H. pylori genome that were not present in other isolates. Among the 1636 genes, 1091 (66.7%) were common to all H. pylori strains, representing the functional core of the genome. Most of the genes found in the H. pylori functional core were responsible for metabolism, cellular processes, transcription and biosynthesis of amino acids, functions that are essential to H. pylori's growth and colonization in its host. In contrast, 522 (31.9%) genes were strain-specific genes that were missing from at least one strain of H. pylori. Strain-specific genes primarily included restriction modification system components, transposase genes, hypothetical proteins and outer membrane proteins. These strain-specific genes may aid the bacteria under specific circumstances during their long-term infection in genetically diverse hosts. Our results suggest 34 H. pylori clinical strains have extensive genomic diversity. Core genes and strain-specific genes both play essential roles in H. pylori propagation and pathogenesis. Our microarray experiment may help select relatively significant genes for further research on the pathogenicity of H. pylori and development of a vaccine for H. pylori.

Gene Cloning, Nucleotide Sequence and Efficent Expression of Peptidyl proryl cis-trans Isomerase from Bacillus stearothermophilus (Bacillus stearothermophilus의 Peptidyl Prolyl cis-trans Isomerase 유전자 분리 염기배열 및 발현)

  • 김동주
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.452-458
    • /
    • 1996
  • A PPIase gene of Bacillus stearothermophilus was screened from a genomic library by plaque hybridization using the A-1 primer as a probe. A PPIase positive plaque contained a 3.0kb insert of the chromosomal DNA. A 3.0kb fragment was subcloned into pUC18, resulting pPI1-40. A DNA fragment encoding the N-terminal portion of the PPIase in pPi-40 was amplified by polymerase chain reaction(PCR) method using the A-1 and B-2 primers. The amplified fragment was cloned into the Sma I site of pUC18 and recombinant plasmid was designated as pSN-18. The nucleotide sequence of 167bp fragment was determined. The deduced amino acid sequence of PPIase was completely matched with the determined N-terminal amino acid sequence of PPIase B. stearothermophilus. The translated protein sequence of PPIase B. stearothermophilus was compared with sequence from periplasmic PPIase from Escherichina coil ; homogies of 16 and 58%, respectively, were found. The clond PPIase gene was over-expressed in E. coil cell using pUC19 as an expression vector. The enzyme was partially purified by heat treatment and colum chromatochraphy on DEAE-Sepharose CL-6B. The molecular weight of the enzyme was dermined to be about 18.0 kDal by SDS-PAGE.

  • PDF

Expression and Cloning of the pmmC Gene Encoding Phosphomannomutase in Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77 균주에서 Phosphomannomutase를 암호화하는 pmmC 유전자의 클로닝과 발현)

  • Kim Mi-Hye;Choi Jung-Do;Shin Malshick;Kim Young-Chang
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.84-89
    • /
    • 2005
  • Phosphomannomutase (PMM) is a key enzyme in prokaryotes and eukaryotes, which catalyzes the conversion of ${\alpha}$-D-mannose 6-phosphate to ${\alpha}$-D-mannose 1-phosphate. The latter is the substrate for the synthesis of GDP-mannose, which serves as the mannosyl donor for many metabolic pathways in the cells. We report here on the isolation of a gene from a genomic library of Sphingomonas chungbukensis DJ77, the pmmC gene encoding phosphomannomutase. The gene was cloned into E. coli expression vector, and the sequence was analyzed. The ribosomal binding site GGAAG lays 5 bp upstream of the ORF of 750 bp, which is initiated by ATG codon and terminated by TAG. The predicted sequence of the enzyme consists of 249 amino acids with a molecular mass of 27.4 kDa and showed $86.9\%$ similarity to that of eukaryotic phosphomannomutase after bioinformatical analyses with the conserved domain search of NCBI. The purified gene product revealed the activity of phosphomannomutase. In conclusion, we confirmed that pmmC gene encodes phosphomannomutase actually.