Browse > Article

Comparative Genomics Profiling of Clinical Isolates of Helicobacter pylori in Chinese Populations Using DNA Microarray  

Han, Yue-Hua (Second affiliated hospital, School of medicine, Zhejiang University)
Liu, Wen-Zhong (Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine)
Shi, Yao-Zhou (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park)
Lu, Li-Qiong (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park)
Xiao, Shudong (Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine)
Zhang, Qing-Hua (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park)
Zhao, Guo-Ping (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park)
Publication Information
Journal of Microbiology / v.45, no.1, 2007 , pp. 21-28 More about this Journal
Abstract
In order to search for specific genotypes related to this unique phenotype, we used whole genomic DNA microarray to characterize the genomic diversity of Helicobacter pylori (H. pylori) strains isolated from clinical patients in China. The open reading frame (ORF) fragments on our microarray were generated by PCR using gene-specific primers. Genomic DNA of H. pylori 26695 and J99 were used as templates. Thirty-four H. pylori isolates were obtained from patients in Shanghai. Results were judged based on In(x) transformed and normalized Cy3/Cy5 ratios. Our microarray included 1882 DNA fragments corresponding to 1636 ORFs of both sequenced H. pylori strains. Cluster analysis, revealed two diverse regions in the H. pylori genome that were not present in other isolates. Among the 1636 genes, 1091 (66.7%) were common to all H. pylori strains, representing the functional core of the genome. Most of the genes found in the H. pylori functional core were responsible for metabolism, cellular processes, transcription and biosynthesis of amino acids, functions that are essential to H. pylori's growth and colonization in its host. In contrast, 522 (31.9%) genes were strain-specific genes that were missing from at least one strain of H. pylori. Strain-specific genes primarily included restriction modification system components, transposase genes, hypothetical proteins and outer membrane proteins. These strain-specific genes may aid the bacteria under specific circumstances during their long-term infection in genetically diverse hosts. Our results suggest 34 H. pylori clinical strains have extensive genomic diversity. Core genes and strain-specific genes both play essential roles in H. pylori propagation and pathogenesis. Our microarray experiment may help select relatively significant genes for further research on the pathogenicity of H. pylori and development of a vaccine for H. pylori.
Keywords
Helicobacter pylori; genetic diversity; microarray; clinical disease;
Citations & Related Records

Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 Backstrom, A., C. Lundberg, D. Kersulyte, D.E. Berg, T. Boren, and A. Arnqvist. 2004. Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc. Natl. Acad. Sci. USA 101, 16923-1628
2 Falush, D., C. Kraft, N.S. Taylor, P. Correa, J.G. Fox, M. Achtman, and S. Suerbaum. 2001. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age. Proc. Natl. Acad. Sci. USA 98, 15056-15061
3 Falush, D., T. Wirth, B. Linz, J.K. Pritchard, M. Stephens, M. Kidd, M.J. Blaser, D.Y. Graham, S. Vacher, G.I. Perez-Perez, Y. Yamaoka, F. Megraud, K. Otto, U. Reichard, E. Katzowitsch, X.Y. Wang, M. Achtman, and S. Suerbaum. 2003. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582-1585   DOI   ScienceOn
4 Kuipers, E.J., D.A. Israel, J.G. Kusters, M.M. Gerrits, J. Weel, A. van der Ende, R.W.M. van der Hulst, H.P. Wirth, J. Hook- Nikanne, S.A. Thompson, and M.J. Blaser. 2000. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181, 273-282   DOI   ScienceOn
5 Liu, J., G.M. Xu, Z.X. Tu, Z.S. Li, Y.F. Gong, and X.H. Ji. 2000. The distribution and significance of cag pathogenicity island of Helicobacter pylori isolated from Chinese patients. Chin. J. Intern. Med. 39, 457-460
6 Lu, H., P.I. Hsu, D.Y. Graham, and Y. Yamaoka. 2005a. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 28, 833-848
7 Lu, H., Y. Yamaoka, and D.Y. Graham. 2005b. Helicobacter pylori virulence factors: facts and fantasies. Curr. Opin. Gastroenterol. 21, 653-659   DOI   ScienceOn
8 Momynaliev, K.T., S.I. Rogov, O.V. Selezneva, V.V. Chelysheva, T.A. Akopian, and V.M. Govorun. 2005. Comparative analysis of transcription profiles of Helicobacter pylori clinical isolates. Biochemistry 70, 383-390   DOI   ScienceOn
9 Salama, N., K. Guillemin, T.K. McDaniel, G. herlock, L. Tompkins, and S. Falkow. 2001. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14668-14673
10 Stein, M., R. Rappuoli, and A. Covacci. 2000. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA 97, 1263-1268
11 Odenbreit, S., J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497- 1500   DOI   ScienceOn
12 Zhou, W., S. Yamazaki, A. Yamakawa, M. Ohtani, Y. Ito, Y. Keida, H. Higashi, M. Hatakeyama, J. Si, and T. Azuma. 2004. The diversity of vacA and cagA genes of Helicobacter pylori in East Asia. FEMS Immunol. Med. Microbiol. 40, 81-87   DOI   ScienceOn
13 Taboada, E.N., R.R. Acedillo, C.C. Luebbert, W.A. Findlay, and J.H. Nash. 2005. A new approach for the analysis of bacterial microarray-based comparative genomic hybridization: insights from an empirical study. BMC. Genomics 6, 78-88   DOI   ScienceOn
14 Backert, S., E. Ziska, V. Brinkmann, U. Zimny-Arndt, A. Fauconnier, P.R. Jungblut, M. Naumann, and T.F. Meyer. 2000. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell. Microbiol. 2, 155-164   DOI   ScienceOn
15 Aspholm-Hurtig, M., G. Dailide, M. Lahmann, A. Kalia, D. Ilver, N. Roche, S. Vikstrom, R.Sjostrom, S. Linden, A.R. Backstrom, C. Lundberg, A. Arnqvist, J. Mahdavi, U.J. Nilsson, B. Velapatino, R.H. Gilman, M. Gerhard, T. Alarcon, M. Lopez- Brea, T. Nakazawa, J.G. Fox, P. Correa, M.G. Dominguez- Bello, G.I. Perez-Perez, M.J. Blaser, S. Normark, I. Carlstedt, S. Oscarson, S. Teneberg, D.E. Berg, and T. Boren. 2004. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305, 519 -522   DOI   ScienceOn
16 Alm, R.A., L.S.L. Ling, D.T. Moir, B.L. King, E.D. Brown, P.C. Doig, D.R. Smith, B. Noonan, B.C. Guild, B.L. Dejonge, G. Carmel, P.J. Tummino, A. Caruso, M. Uria-Nickelsen, D.M. Mills, C. Ives, R. Gibson, D. Merberg, S.D. Mills, Q. Jiang, D.E. Taylor, G.F. Vovis, and T.J. Trust. 1999. Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature (London) 397, 176-180   DOI   ScienceOn
17 Urwin, R. and M.C.J. Maiden. 2003. Multilocus sequence typing: A tool for global epidemiology. Trends Microbiol. 11, 479-487   DOI   ScienceOn
18 Achtman, M., T. Azuma, D.E. Berg, Y. Ito, G. Morelli, Z.J. Pan, S. Suerbaum, S.A. Thompson, A. van der Ende, and L.J. van Doorn. 1999. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microl. biol. 32, 459-470
19 Han, Y.H., W.Z. Liu, H.Y. Zhu, and S.D. Xiao. 2004. Clinical relevance of iceA and babA2 genotypes of Helicobacter pylori in a Shanghai population. Chin. J. Dig. Dis. 5, 181-185   DOI   ScienceOn
20 Yamazaki, S., A. Yamakawa, T. Okuda, M. Ohtani, H. Suto, Y. Ito, Y. Yamazaki, Y. Keida, H. Higashi, M. Hatakeyama, and T. Azuma. 2005. Distinct diversity of vacA, cagA,and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J. Clin. Microbiol. 43, 3906-3916   DOI   ScienceOn
21 Israel, D.A., N. Salama, U. Krishna, U.M. Rieger, J.C. Atherton, S. Falkow, and R.M. Peek, Jr. 2001. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98, 14625-14630
22 Olfat, F.O., Q. Zheng, M. Oleastro, P. Voland, T. Boren, R. Karttunen, L. Engstrand, R. Rad, C. Prinz, and M. Gerhard. 2005. Correlation of the Helicobacter pylori adherence factor BabA with duodenal ulcer disease in four European countries. FEMS Immunol. Med. Microbiol. 44, 151-156   DOI   ScienceOn
23 Fitzgerald, J.R. and J.M. Musser. 2001. Evolutionary genomics of pathogenic bacteria. Trends Microbiol. 9, 547-553   DOI   ScienceOn
24 Lin, L.F., J. Posfai, R.J. Roberts, and H. Kong. 2001. Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98, 2740-2745
25 Jin, Q. Z.H. Yuan, J.G. Xu, Y. Wang, Y. Shen, W.C. Lu, J.H. Wang, H. Liu, J. Yang, F. Yang, X.B. Zhang, J.Y. Zhang, G.W. Yang, H.T. Wu, D. Qu, J. Dong, L.L. Sun, Y. Xue, A.L. Zhao, Y.S. Gao et al. 2002. Genome sequence of Shigella flexneri 2a: insights into patho-genicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids. Res. 30, 4432-4441   DOI   ScienceOn
26 Gatti, L.L., E. F. Souza, K. Leite, E. de Souza Bastos, L. Vicentini, L. da Silva, M. Smith, and S. Payao. 2005. cagA, vacA alelles and babA2 genotypes of Helicobacter pylori associated with gastric disease in Brazilian adult patients. Diagn. Microbiol. Infect. Dis. 51, 231-235   DOI   ScienceOn
27 Gressmann, H., B. Linz, R. Ghai, K.P. Pleissner, R. Schlapbach, Y. Yamaoka, C. Kraft, S. Suerbaum, T.F. Meyer, and M. Achtman. 2005. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS. Genet. 1, 419-428
28 Chan, K., S. Baker, C.C. Kim, C.S. Detweiler, G. Dougan, and S. Falkow. 2003. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA mircroarray. J. Bacteriol. 185, 553-563   DOI
29 Welch, R.A., V. Burland, G. Plunkett, P. Redford, P. Roesch, D. Rasko, E.L. Buckles, S.R. Liou, A. Boutin, J. Hackett, D. Stroud, G.F. Mayhew, D.J. Rose, S. Zhou, D.C. Schwartz, N.T. Perna, H.L.T. Mobley, M.S. Donnenberg, and F.R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uro-pathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 17020-17024
30 Fukiya, S., H. Mizoguchi, T. Tobe, and H. Mori. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella Strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186, 3911-3921   DOI   ScienceOn
31 Takata, T., R. Aras, D. Tavakoli, T. Ando, A.Z. Olivares, and M.J. Blaser. 2002. Phenotypic and genotypic variation in methylases involved in type II restriction-modification systems in Helicobacter pylori. Nucleic Acids. Res. 30, 2444-2452   DOI   ScienceOn