본 연구에서는 텍스트마이닝을 활용해 한국과 미국의 온라인 뉴스와 포럼에서 산업수학과 관련한 이슈를 파악하고, 그 결과를 비교 분석하였다. 이를 위해 한국의 주요 포털 사이트인 네이버의 뉴스 기사, 클리앙의 게시글과 댓글, 그리고 미국의 New York Times와 CNN의 뉴스 기사, Reddit의 게시글과 댓글에서 산업수학과 관련한 텍스트 데이터를 수집하여 구조적 토픽모델링 분석을 수행하였다. 주요 분석결과는 다음과 같다. 첫째, 한국의 뉴스는 산업수학의 필요성과 정부의 지원 측면에 대해, 미국에서는 산업수학이 활용되는 다양한 분야에 대해 다루는 것으로 나타났다. 둘째, 한국에서는 온라인 뉴스와 포럼에서 각기 다른 주제로 동일한 개수의 이슈가 나타났지만, 미국에서는 온라인 포럼보다 뉴스 기사에서 더 많은 이슈를 다루고 있는 것으로 나타났다. 이를 토대로 한국에서 산업수학이 정착하는 데 있어 연구자들에게는 학술적, 그리고 정부에는 실무적 시사점을 제시하였다.
The news articles collected with keyword "non face-to-face" were analyzed through topic modeling applied with LDA algorithm. In this study, collected articles were divided into two periods, period 1(the beginning of COVID-19 spread) and period 2(the end of COVID-19 spread), according to issued date of the articles. The articles of period 1 showed support for non-face-to-face treatment, smart library, the beginning of the online financial era, non-face-to-face entrance exam and employment, stock investment for main topic words. And the articles of period 2 showed conversion to non face-to-face classes, increasing unmanned stores, online finance, education industry, home treatment for main topic words. Also, further issues were discussed through visualization of topic words. These results provide evidence that education and unmanned business in non-face-to-face industries are growing.
Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
Asia pacific journal of information systems
/
제30권4호
/
pp.719-740
/
2020
The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.
This work aims to describe pragmatic strategies and linguistic features of replies that occur in the comment section of online newspapers. The dominant media in this digital age is the Internet and its rapid development and expansion of use have contributed not only to the change of the form of production of journalistic texts, but also to the consumption of those texts. In the past, the news was transmitted in a unidirectional way but now readers of online newspapers do not remain passively reading the articles. They actively participate in the exchange of opinions with other readers. The individual consumption of journalistic texts has become a collective and social act. The purpose of the study is to investigate the communication intention of the users of comment sections and analyze the linguistic formulation of replies. We attempt to discover specific aspects of replies and responses for online newspaper articles, considering them as an independent type of Computer Mediated Communication (Internet Mediated Communication). Observing language attitudes appearing in the electronic environment and discovering the characteristics of the Spanish language on the Internet will allow us to contribute to understand the theoretical aspects related to the CMO better.
As online communities proliferate, online news sites have received great attention in news media research. Although most of the online news sites provide contents for free, some have adopted the Pay-What-You-Want (PWYW) model by offering a voluntary payment option to the readers. In this study, we investigate the factors which influence subscribers' voluntary payment behavior on an online news site. Drawing upon both the Stimulus-Organism-Response (SOR) framework and the Elaboration Likelihood Model (ELM), we hypothesize that appreciation has a direct effect on the subscribers' voluntary payment behavior, whereas central factors (positive emotional content, cognitive content) and peripheral factors (news sharing, news article length) of the news articles have indirect impacts on voluntary payment behavior through the enhanced appreciation. Based on an empirical analysis of 172 news articles from the Korean online news site that adopted the PWYW pricing model (i.e., Ohmynews.com), we find that appreciation plays a critical role in voluntary payment behavior and that peripheral factors have significant impacts on appreciation. However, the impacts of central factors on appreciation are not found. By identifying influencing factors of subscribers' voluntary payment behavior on online news sites for the first time, this paper suggests a prospective alternative profit model for online news providers faced with fierce competition.
한국의 온라인 토론게시판은 의견 공유뿐 아니라 여론 형성과 참여를 위한 공간으로 활발히 사용되고 있다. 토론게시판에서 어떤 글은 사회적 정치적 이슈를 몰고 다니기도 하고 어떤 글은 사용자의 관심을 끌지 못하기도 한다. 본 논문에서는 한국의 유명 토론게시판인 다음 아고라와 서프라이즈에서 수집한 글의 통계적 정보를 이용하여 글의 인기를 분석하고 인기글을 예측하기 위한 예측모델을 제안한다. 분석결과 아고라는 87.52%의 글이 게시판에 제출된 후 하루가 지나기 전에 글의 인기가 끝나고 있었지만 서프라이즈는 39%의 글이 4일 이상 인기가 지속되고 있었다. 그렇지만 글의 인기기간과 조회수의 상관관계는 낮았다. 조회수 증가가 오랫동안 지속된다고 해서 최종 조회수가 높다는 것을 의미하지는 않는다. 본 논문에서는 분류와 예측 분야에서 잘 알려진 SVM 모델과 유사매칭 모델, 그리고 새롭게 제안한 예측 모델 '베이스 라인'을 이용하여 인기글을 예측하고 평가하였다. SVM 모델이 F-measure와 정밀도에서 유사매칭과 베이스라인보다 우수하였으며, 베이스라인이 실행시간에서 가장 우수한 성능을 보였다.
본 연구는 2010년 이후 매년 평균 745개씩 증가해 2021년 약 1만 개에 이르고 있는 인터넷신문을 대상으로, 유명인 SNS를 활용해 기사화하는 문제를 살펴보았다. 인터넷신문사 40개를 선정해 2021년 7월 생산된 202,730개 기사를 분석하였다. 분석 결과, 전체 기사의 1.27%(2,582개)가 유명인 SNS 활용기사였다. 이는 평균적으로 1개 인터넷신문이 하루에 2.08개, 한 달에 64.7개의 유명인 SNS 활용기사를 생산하고 있음을 나타낸다. 정치인(39.8%), 인플루언서(6.5%)의 SNS보다 연예인 SNS(53.7%)가 많이 사용되고 있었다. 연예인과 인플루언서 SNS 활용기사의 경우, 인스타그램(69.1%, 57.1%)의 활용도가 높았고, 대부분은 근황/동정, 일상/여행/음식 등 신변잡기와 관련된 내용이었다. 정치인 SNS 활용기사의 경우에는 페이스북(70.4%)의 활용도가 높았고, 사회/정치 문제에 대한 견해, 폭로/비방/설전 등의 내용이 주를 이루었다. SNS 활용기사의 평균 길이는 536자로, 국내 종합지 1면 기사의 평균(952자) 보다는 짧고, 모바일기기 화면에 들어가는 350자 보다는 약간 긴 것으로 파악되었다. 이러한 SNS 활용기사의 문제점은 추가적인 취재 없이 이미 SNS에 공개된 내용만으로 작성되는 것이 대부분(88.4%)이며, SNS를 활용한 기사임에도 정확한 출처를 밝히지 않은 경우가 14%에 달한다는 것이다. 40개사 분석 결과를 인터넷신문 1만 개 시대에 적용해 그 함의점을 제시하였다.
Much effort has been exerted to analyze online texts and understand how empirical results can help improve sales performance. In this research, we aim to extend this stream of research by decomposing online texts based on text sources, namely, companies and consumers. To be specific, we investigate how online texts driven by companies differ from those generated by consumers, and the extent to which both types of online texts have different effects on online sales. We obtained sales data from one of the biggest game publishers and merged them with online texts provided by companies using news articles and those created by consumers in user communities. The empirical analyses yield the following findings. Word visualization and topic analyses show that firms and consumers generate different contexts. Specifically, companies spread word to promote their own events whereas consumers produce online words to share winning strategies. Moreover, online sales are influenced by consumer-generated community topics whereas firm-driven topics in news articles have little to no effect. These findings suggest that companies should focus more on online texts generated by consumers rather than spreading their own words. Moreover, online sales strategies should take advantage of specific topics that have been proven to increase online sales. In particular, these findings give startup companies and small business owners in variety of industries the advantage when they use the online channel for distribution and as a marketing platform.
본 논문의 연구 목표는 뉴스 가치 평가에 근거한 중요 뉴스 자동 추천 및 개인화 방안을 제시하는 데에 있다. 뉴스 가치 평가는 전통적인 오프라인 신문에서 편집장들이 1면 뉴스를 선정할 때 사용하는 접근법으로 본 논문에서는 이를 시스템적으로 구현하는 방안을 제시한다. 이렇게 함으로써 콘텐츠 주제에 대한 전통적인 개인 선호 성향과는 다르게 뉴스의 사회적 가치에 대한 관심 성향을 기준으로 중요 뉴스를 선별할 수가 있다. 뉴스의 사회적 가치는 지면 신문의 기존 연구에서 제시한 사회적 중요도, 새로운 볼거리, 수용자 관련성, 인간적 흥미 4가지 기준을 준용하였고, 본 연구에서는 이를 시스템적으로 적용하기 위한 절차적, 구조적 방안을 도출하였다. 중요 뉴스의 선별 과정은 뉴스의 가치 평가를 위한 과정과 평가된 결과를 개인화하는 과정으로 구성된다. 실험을 통해 특정 시점에서의 각 온라인 뉴스 서비스들의 중요 뉴스들과 본 논문에서 제시한 기법을 통해 선별된 중요 뉴스들에 대한 사용자 만족도를 비교 평가하여 본 연구에서 제안하는 방법이 더 효과적임을 확인하였다.
최근 웹툰, 음원, 동영상, 게임, 교육, 앱 등 많은 콘텐츠 기업에서 콘텐츠 유료화 정책을 추진하고 있으나, 무료 콘텐츠에 익숙한 독자들의 문화적 관성이 온라인 콘텐츠의 유료화 전환에 많은 어려움을 주고 있다. 특히 온라인 뉴스 콘텐츠는 포털 사이트를 통해 무료로 배포되고 있어 유료화에 대한 독자들의 거부감이 다른 온라인 콘텐츠 보다 더욱 심한 실정이다. 이러한 문제 해결을 위해 학계 및 산업계에서 온라인 콘텐츠의 유료화 방안에 대한 연구가 다양한 차원에서 진행되었다. 최근에는 일부 온라인 뉴스 매체를 중심으로 독자들이 자발적으로 마음에 드는 뉴스 콘텐츠에 대해 원하는 만큼의 구독료를 지불하게 하는 Pay-What-You-Want (PWYW) 지불모델을 적용하는 시도가 이뤄지고 있다. 이에 본 연구는 PWYW 모델의 성공적인 정착을 위한 선결요인으로 독자의 자발적 독자구독료 지불행위에 영향을 미치는 온라인 뉴스 콘텐츠의 체계적 속성을 도출하고, 각 속성 및 하위 속성의 상대적 중요도를 비교 분석하였다. 좀 더 구체적으로, 선행연구 분석을 통해 기사제목 유형, 기사 이미지 자극성, 기사 가독성, 기사 유형, 기사 지배적 정서, 기사 내용-이미지 유사성 등 총 여섯 가지의 온라인 뉴스 콘텐츠의 체계적 속성을 도출하였으며, 내용분석(content analysis)을 통해 각 기사의 속성값을 측정하고 이를 기반으로 컨조인트 분석(conjoint analysis)을 실시하여 속성 간 상대적 중요도를 계산 및 검증하였다. PWYW 모델이 적용된 온라인 뉴스 콘텐츠 379개에 대한 컨조인트 분석 결과, 기사 가독성, 기사 내용-이미지 유사성, 기사제목 유형 등의 순으로 자발적 독자구독료에 큰 영향을 주는 것으로 분석된 반면, 기사 유형, 기사 지배적 정서, 기사 이미지 자극성 등은 상대적으로 낮은 중요도를 보이는 것으로 조사되었다. 본 연구는 내용분석과 컨조인트 분석을 동시에 실시하여 온라인 뉴스 콘텐츠에 대한 자발적 지불의도에 영향을 미치는 체계적 요인을 도출하고, 그 상대적 중요도까지 살펴보았다는 점에서 학술적 의의가 있으며, 온라인 뉴스 콘텐츠 제작자 및 사이트 운영자들로 하여금 독자들의 자발적 지불을 유도할 수 있는 가이드라인을 제시하였다는 점에서 그 실무적 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.