• Title/Summary/Keyword: One-to-One Resonance

Search Result 1,398, Processing Time 0.035 seconds

A Debate on the Use of Presaturation Method in NMR for Structure Determination of Polypeptides in $H_2O$

  • Lee, Chulhyun;Yi, Gwan-Su;Kim, Eun-Hee;Lee, Jo-Woong;Chagjoon Cheong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.21-29
    • /
    • 1997
  • Three typical solvent suppression methods employed for measuring the NOE data that are used for structure determination of polypeptides by modeling were discussed and compared with one another. In the experiments with several peptides composed of 10 to 65 amino acids the presaturation method was found to give severely distorted signal intensities of exchangeable protons, thus making the results based on this method much less reliable.

  • PDF

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

  • Park, Sang-Shin;Park, Se Myung;Jung, Jongkyo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.250-254
    • /
    • 2013
  • In this research, the linear electrical generator in wave energy farm utilizing resonance power buoy system is studied. The mechanical resonance characteristics of the buoy and the wave are analyzed to maximize the kinetic energy in a relatively small wave energy area where WRPS is operated. In this research, we chose an analog model of the linear electrical generator of which size is one-hundredth of an actual size of it in WPRS (Wave energy farm utilizing Resonance Power buoy System) prior to verifying the characteristics of actual model of linear electrical generator in WRPS. In addition, the finite element analysis is conducted using commercial electromagnetic analysis software named MAXWELL to examine the electric characteristic of linear generator. Finally, for the verification of dynamic and electric characteristics of linear generator, the prototype was manufactured and the experiments to measure the displacement and the output electric power were performed.

Synthesis and Characterization of a Receptor-Targeting Contrast Agent

  • Yang, Taegyun;Park, Ji-Hyung;Lee, Seung-Cheol;Kim, Cheol-Su;Cho, Jee-Hyun;Lee, Chul-Hyun;Cheong, Chae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.1
    • /
    • pp.46-54
    • /
    • 2003
  • We synthesized a contrast agent for MRI that is capable of binding to the ABP-1 receptor and enhancing the contrast of the targeted cells. We used a lysine dendrimer (G=3)DTPA[Gd] as the contrast agent and synthesized a biotinylated polyclonal antibody for ABP-1 as the first antibody. Lysine dendrimers were prepared using the solid phase peptide synthesis method.$^3$ Amino-terminated lysine dendrimers were then coupled to DTPA using the anhydride method. Gd was complexed with the DTPA-lysine dendrimer in an acidic solution of 3 eq GdCl$_3$ to one of DTPA. The lysine dendrimer-DTPA[Gd] and avidin were conjugated in MES solution, pH 6.0, using EDC as the coupling reagent. The biotin-avidin system was used to link the polyclonal antibody and contrast agent. K562 cells were used for imaging.

  • PDF

Influence of Internal Resonance on Responses of an Autoparametric Vibration Absorber under Random Excitation (불규칙 가진력을 받는 동흡진기의 내부공진효과)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1041-1047
    • /
    • 2000
  • The main objectives of this study are to examine the random response of a vibration absorber system with autoparametric coupling in the neighborhood of internal resonance by Gaussian closure and to compare the results with those obtained by Monte Carlo simulation. The numerical simulation is found to support the main features of the nonlinear modal interaction in the neighborhood of internal resonance conditions. While the Gaussian closure exhibits regions of multiple solutions in the neighborhood of internal resonance, the numerical simulation gives only one solution depending on the assigned initial conditions. The on-off intermittency phenomena of the cantilever mode is observed in the Monte Carlo simulation over a small range of parameter.

  • PDF

Electron Spin Resonance Line-widths of Carbon Nanotubes based on the Hyperfine Interaction

  • Park, Jung-Il;Cheong, Hai-Du
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • The Kubo formalism and utilizing the projection operator technique (POT) introduced by Kawabata, the electron spin resonance (ESR) line-shape formula for carbon nanotubes through the hyperfine interaction introduced earlier in terms of POT. We can see that the line-width decreases exponentially as the temperature increases. The spin relaxation time show gradual decrease as magnetic field becomes larger. The analysis reveals the peculiarities in spin relaxation inherent to one dimensional system at low temperature and weak magnetic fields. Thus, the present technique is considered to be more convenient to explain the carbon nanotubes as in the case of other optical transitions.

Experimental Results of Thermoacoustic Resonance Heat Generation (음향 공진 열 발생에 대한 실험 결과)

  • Bae, Jong Yeol;Seo, Seonghyeon;Kang, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.730-733
    • /
    • 2017
  • An ignitor for the initiation of burning propellants becomes one of the most critical components for the operation of liquid rocket engines. The important phenomenon of the igniter is thermoacoustic resonance. This paper mainly includes experimental results on thermoacoustic resonance phenomenon from distance between nozzle and resonance tube. The ultimate goal is to develop an ignitor capable of multiple ignitions based on research results about the usage of the thermoacoustic resonance phenomenon.

  • PDF

Practical Guide to NMR-based Metabolomics - I : Introduction and Experiments

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.96-101
    • /
    • 2017
  • Metabolomics is one of latest '-omics', which is to analyze metabolome in cells, tissues and biofluids and to study metabolisms. It has become increasingly popular since 1990. The first goal of metabolomics is to analyze metabolites in a technical aspect. The major two analytical platforms in metabolomics are NMR spectroscopy and mass spectrometry (MS). MS is superior to NMR for detecting many more metabolites. That is one of the most important factors in metabolomics. However, NMR also has several advantages over MS. In this review, I firstly introduced metabolomics by comparing NMR-based metabolomics and MS-based metabolomics. Second, I explored technical issues on sample preparation and NMR experiments for metabolite identification and quantification.

A Study on the Effect of Resonant Coil Size and Load Resistance on the Transmission Efficiency of Magnetic Resonance Wireless Power Transfer System (공진 코일의 크기와 부하 저항이 자계 공명 무선 전력 전송 장치의 전달 효율에 주는 영향에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed and the effect of resonant coil radius and load resistance to this system was analyzed by the circuit analysis method. As a result, the calculated transmitted-power is similar to measured one, and the coil size has a small effect to the coupling coefficients in the resonant frequency band. In addition, the fact that the calculated transmitted-power according to the source frequency is similar to measured one confirms that the circuit analysis methode in this paper is valid. The input side transmission efficiency ${\eta}_i$ including only the loss in the power transfer circuit is almost 90[%] with the large coil in the 10[cm] transfer distance, and 65[%] with the small coil in 1[cm]. The source side transmission efficiency ${\eta}_s$ is 30~40[%] at both coil when load resistance below 4.7[${\Omega}$] has been connected. Considering that the maximum ${\eta}_s$ is 50[%], this is valid in the practical applications.

A Study on Measurement and Reduction of Cavity Resonance Based on the Internal Acoustic Modeling of Compressor (공조용 압축기의 Cavity Resonance의 측정 및 저감에 관한 연구)

  • Ahn, B.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-33
    • /
    • 1999
  • Pressure pulsation Inside the discharge and suction cavity of rotary and scroll compressor are often a major source of objectionable noise and vibration. The key factor of these noise and vibration is due to the cavity resonance. It is not only necessary to understanding the characteristics of pulsation in order to reduce the excitation force of gas to the cavity but also to verifying the phenomena of cavity resonance. For the purpose of these understandings, measurement and simulation of cavity resonance can lead to a better understandings how they occur and be very important to identify the ways to reduce the noise efficiently. In this paper, modeling of the cavity(internal acoustics inside the shell) is discussed and simulated using FEM. Results from the simulation are compared with those measurement in experiments. In describing of cavity mode by experiments, it is very important to specify the exact conditions under which they are measured. Finally, this paper shows the one example of reduced cavity resonance in the compressor.

  • PDF

Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation (매개 가진되는 얇은 외팔보의 비선형 진동 안정성)

  • Bang, Dong-Jun;Lee, Gye-Dong;Jo, Han-Dong;Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.