Browse > Article
http://dx.doi.org/10.6564/JKMRS.2015.19.1.011

Electron Spin Resonance Line-widths of Carbon Nanotubes based on the Hyperfine Interaction  

Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
Cheong, Hai-Du (Division of Liberal Arts, Hanbat National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.19, no.1, 2015 , pp. 11-17 More about this Journal
Abstract
The Kubo formalism and utilizing the projection operator technique (POT) introduced by Kawabata, the electron spin resonance (ESR) line-shape formula for carbon nanotubes through the hyperfine interaction introduced earlier in terms of POT. We can see that the line-width decreases exponentially as the temperature increases. The spin relaxation time show gradual decrease as magnetic field becomes larger. The analysis reveals the peculiarities in spin relaxation inherent to one dimensional system at low temperature and weak magnetic fields. Thus, the present technique is considered to be more convenient to explain the carbon nanotubes as in the case of other optical transitions.
Keywords
Electron spin resonance; Projection operator technique; Carbon nanotubes; Line-widths;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001)   DOI   ScienceOn
2 O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, and Walt A. de Heer, Phys. Rev. B 52, R6963 (1995)
3 L. Forro et al., in "Science and Application of Nanotubes" (Tomanek and Enbody, Eds.), Kluwer Academic/Plenum Publishers, New York, 2000.
4 M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, in "Science of Fullerences and Carbon Nanotubes" (M. S. Dresselhaus, G. Dresselhaus, and P. S. Eklund, Eds.), Academic Press, New York, 1996.
5 A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970)   DOI
6 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)   DOI
7 J. Y. Sug, and S. D. Choi, Phys. Rev. E 55, 314 (1996)
8 J. Y. Sug, S. G. Jo, and S. D. Choi, Phys. Rev. B 64, 235210 (2001)
9 J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 53, 776 (2008)   DOI
10 J. I. Park, H. K. Lee, and H. R. Lee, J. Magnetics 16, 108 (2011)   DOI
11 J. I. Park, H. R. Lee, and S. H. Lee, Jpn. J. Appl. Phys. 51, 52402 (2012)   DOI
12 J. P. Salvetat, T. Feher, and L. Forro, Phys. Rev. B 72, 75440 (2005)
13 A. Thess, R. Lee, P. Nikolaev, H. Dai, and P. Petit, Science 273, 483 (1996)   DOI   ScienceOn
14 T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005)   DOI
15 V. Barone, J. Chem. Phys. 101, 6834 (1994)   DOI
16 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999)   DOI
17 C. K. Yang, J. Zhao, and J. P. Lu, Phys Rev. Lett. 90 , 257203 (2003)   DOI
18 Y. G. Semenov, Phys. Rev. B 67, 115319 (2003)