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Abstract   The Kubo formalism and utilizing the 
projection operator technique (POT) introduced by 
Kawabata, the electron spin resonance (ESR) 
line-shape formula for carbon nanotubes through the 
hyperfine interaction introduced earlier in terms of 
POT. We can see that the line-width decreases 
exponentially as the temperature increases. The spin 
relaxation time show gradual decrease as magnetic 
field becomes larger. The analysis reveals the 
peculiarities in spin relaxation inherent to one 
dimensional system at low temperature and weak 
magnetic fields. Thus, the present technique is 
considered to be more convenient to explain the 
carbon nanotubes as in the case of other optical 
transitions. 
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Introduction 
 
Carbon nanotubes (CNTs) are fascinating 
low-dimensional objects that offer an outstanding 
playground to challenge the quantum theory at the 
nanoscale, manifesting novel physical phenomena. 
Electron spin resonance (ESR) spectroscopy has been 

used to determine the electronic properties of CNT. 
In ESR experiments, one applies a static magnetic 
field and measures the relative frequency dependence 
of the absorption power by sweeping an external 
electromagnetic field. Electron hyperfine interaction 
(HFI) effects are of great interest in the field of 
spintronics, and their detailed understanding is both 
of fundamental and of technological interest, e.g., for 

the coherent manipulation of spin qubits 1 4− . Since 
HFI are generally the leading terms breaking the 
special unitary invariance, deviations in the 
absorption power from delta peak, e.g., line-widths or 
line-shift, are directly connected to this interaction.  
The objective of the present report is to theoretically 
investigate the electron spin relaxation properties in 
the CNTs, crucial piece of information for any spin 
related phenomena. Specifically, we consider the HFI 
with nuclear spins 1/ 2I =  of 13C  isotopes. The 
HFI is thought to be one of the most important spin 
relaxation processes in the CNTs; strong radial 
confinement of electrons in the CNTs enhances 
electron-nuclear overlap and subsequently the 
hyperfine interaction compared to the bulk crystals. 
From a theoretical point of view, the studies 
performed thus far on a resonant system in the 
presence of external electromagnetic field have 
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usually been based on the linear response theories. 
Among them, we focus on the projection operator 

technique (POT) of Kawabata 5 . In this report, 

starting with the Kubo 6  identity and using the POT 
introduced by Kawabata, the line-shape formula for a 
single-welled carbon nanotube (SWNT) is 

derived 7 11− . We also discuss the analysis for 
quantum limit and draw conclusions. 

 
 
System 
 
We begin with a few essential definitions concerning 
CNTs. The CNT is conveniently imagined as a spiral 
graphite sheet (graphene) rolled along the chiral 
vector a bL n a n b= +

  . Here (1,0)cca a=
  and 

(1/ 2, 3 / 2)ccb a=


 are the graphene lattice unit 

vectors with 0.246cca = nm  and an  and bn  

are integers, which characterize the geometry of a 
CNT. The chiral angle is 1tan 3 / (2 )b a bn n nθ −  = + 

, 

and the tube radius is 2 23 cc a b a bL a n n n n= + +


, 

/d L π=


. The property of our interest is the 

longitudinal ( lτ ) and transversal ( tt ) spin relaxation 

time of an electron with the radius vector r  and 

spin S


 in a SWNT. The governing Hamiltonian 
caused by the Fermi contact HFI with N  nuclear 

spins jI


 located at lattice sites jR


 can be 

expressed as 12 14−  

0
1

( )
N

j
HF HF j

j
H a SI r Rδ

=

= Ω −∑
   

     ,S≡ Θ


                             (1) 

where the HFI constant HFa  and the area of the 

graphene sheet 0Ω  are normalized per carbon atom. 

This Hamiltonian HFH  can also be expressed in 

terms of the fluctuating field operator Θ


 that 

mediates spin relaxation. Field operator Θ


 must be 
expressed in terms of electronic Bloch states of the 
relevant energy bands. In an effective mass 
approximation, the eigenstates for the conduction 
bands in the vicinity of the K  point take the form 

( ){ }
0

( )1 exp ,
12

k
k i k

A L
µν

µνϕ x η
Ψ 

= + 
 

 

2 2
( ) ,

ik
k

k
µν

µν

µν

ϕ

ϕ

−
Ψ =

+
 

2
3 ,

Lµν

µπ ν
ϕ

 − 
 =                      (2) 

where 0A  denotes the length of the CNT, and the 

quantum number 0, 1, 2,...ν = ± ±  distinguishes the 
energy bands, while µ  takes one of the three 

integers 1,0,1−  that makes 1 2( )ν ν µ− −  an 

integer multiple of 3. As shown in Fig. 1, ξ  and η  
represent the coordinates for the axes directed along 

L


 (i.e., the circumference) and the CNT (i.e., M


), 
respectively. The corresponding dispersion relation 
for the k  states reads 

2 2 ,k kµ µνε γ ϕ= +                         (3) 

 

 
Figure 1. The lattice structure of graphene. 
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where γ  is a transfer matrix element. Assuming 
that only the lowest conduction band is occupied by 
electrons in CNT with 1ν = +  or -1, we restrict our 
consideration to the 0ν =  case at a given 
temperature. Then, Eq. (3) in the vicinity of the K  

point can be approximated as 15  
2 2

* ,
2 2

g
k

E k
m

ε = +
                          (4) 

with an effective mass * 22 / 3m Lπ γ=   and the 

band gap 4 / 3gE Lπg= . In the 'K  valley, a 

similar dispersion relation can be obtained when k  
is substituted by 'k . Although it is known that the 

external static magnetic field B


 modified the CNT 
electronic states, this effect is neglected as the 
relevant parameter 2( / 2 )Hd a  (where d  is the 

CNT diameter and /Ha c eB=   the magnetic 

length) is practically very small. Hence, we only 
consider the influence of B  on electron spin state 
through the Zeeman energy σ ω ; 1/ 2σ = ±  is 

the spin projection on the B


 direction. Using the 
expressions given above, we can represent the 
fluctuating field operator in a second quantized form 
in terms of the electron creation-annihilation 
operators †

ka σ  and ka σ , 

( ){ }
1 2

1 2

†
1 2

, , 10

exp ,
N

jNT
j k k

k k j

a i k k I a a
Aa a σ σ

σ

η
=

Θ = −∑ ∑
(5) 
where s  denotes the coordinate for the spin states, 

the direction of the static magnetic field B


 is 
chosen as the z  axis and two transversal directions 
as x  and y  ( , ,x y zα = ). In addition, 

0 /NT HFa a L= Ω  and jη  is the location of the 

j th−  nuclear spin on the CNT axis. As 1k  and 

2k  are any two states in the Brillouin zone, Eq. (5) 

accounts for the effects of both intra- and inter-valley 
electron scattering on the nuclear spins. 
 

Line-shape formula 
 
The matrix Γ  of the line-shape can be reduced to 
the Bloch-Redfield diagonal form with a leading 
diagonal composed of matrix elements 1/xx ttΓ = , 

1/yy ttΓ = , 1/zz lτΓ = : 

1 2 ( ) ( ),xx
l

nπ ω γ ω
τ

=  

1 [ ( ) ( ) ( )],zz xx
t

nπ γ ω ω γ ω
t

= +               (6) 

where /( ) (1 ) / 2Bk Tn e ωω −= +   and ( )ααγ ω  is 

Fourier transformed correlation function of the 
operator αΘ  

2

1( ) ( ) ,
2

i tt e dtω
αααα  γ ω

π
∞

−∞
= Θ Θ∫

         (7) 

Evaluation of the line-shape can be reduced to 
finding relevant ααγ . In Eq. 

(7), ( ) exp( / ) exp( / )HF HFt iH t iH tαα Θ = Θ −  , 

{ } { }/ /( ) ( )... ... /HF B HF BH k T H k Te eTr e Tr e− −= , where 

HFH  is the Hamiltonian of the system, it take 

form 16,17  
†

,
.j

HF k k k Z
k j

H a a Iσ σ ν
σ

ε ω= +∑ ∑              (8) 

The nuclear spin operator xI  contained in the 

fluctuating field operator xΘ  is conveniently split 

into two parts ( ) / 2xI I I+ −= +  with the raising 

and lowering operators x yI I iI± = ± ; 

correspondingly, ±Θ  is defined from 

( ) / 2x + −Θ = Θ +Θ  as a formal substitution for 

index α . Then, by averaging 1 2( ) ji k ke η−  over the 
random distribution of N  nuclear isotopes 13C , 
the Fourier transformation ( )γ ω±  of the 

correlation function ( )t±Θ Θ
 gives 

2

' '2
, ',0

( ) 2 (1 ) ( ),NT
k k n k k

k k

aN I I f f
A σ σ

σ

γ ω δ ω ε ε ω± ±= − ± + − +∑   

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(9) 
where †

k k kf a aσ σ σ=  is the Fermi-Dirac 

distribution function for non-degenerate electron 
state k . Since ( ) ( ) 0γ ω γ ω++ −−= =  from 

0I I I I+ + − −= = , Eq. (9) allows one to find 

( ) [ ( ) ( )] / 4xxγ ω γ ω γ ω+− −+= +  as well as 

( ) ( )xxn ω γ ω  in the form 

1( ) ( ) [ ( ) ( ) ( ) ( )].
8xxn ω γ ω γ ω γ ω γ ω γ ω+− −+ +− −+= + + + +                                 

(10) 
Using Eqs. (9) and (10) and identity 

2 2 22x y z xI I I I I I± = + ± ≅≅ , one can 

derive relaxation parameters in Eq. (6). Under the 
assumption that the nuclear spin splitting nω  is 

negligible compared to ω , it takes the form 
2

2
' ' '2

, ',0

( ) ( ) [ (1 ) (1 )] ( ).NT
xx x k k k k k k

k k

an N I f f f f
A σ σ σ σ

σ

π ω γ ω δ ω ε ε= − + − + −∑ 


(11) 
Applying inequalities 1kf σ � , ' 1kf σ � , Eq. (11) 

non-degenerate electrons reduces to 
2

2
'2

, ',0

( ) ( ) 2 ( ).NT
xx x k k k

k k

an N I f
A σ

σ

π ω γ ω δ ω ε ε= + −∑ 


(12)  
Similarly, we find 

2
2

'2
, ',0

(0) 2 ( ).NT
zz z k k k

k k

aN I f
A σ

σ

πγ δ ε ε= −∑


   (13) 

Note that in the case of 1/ 2I = , 2 1/ 2Iα =  that 

lead to 2 2 1/ 4x zI I= = . 

Following Kawabata 5 , we define two projection 
operators P±  and Q±  as      

( , ) ,
( , )

X YP Y
X

σ
σ

±
± +

± +

≡ ( , ) ,
( , )

YQ Y X
X

σ
σ
+

± ±
± +

≡        (14) 

with X a a+± = . We easily see that P±  and Q±  

satisfy the condition imposed on projection 
operators, 2P P± ±= , 2Q Q± ±=  and 

( , (1 ) ) ((1 ) , ) 0Q X P Y P X P Y± ± ± ±− = − = . We 

consider the equation of motion as below 
( , ( ))( ) .

( , )
X tt

X
σ
σ

± +
±

± +

X ≡                     (15) 

We separate X ±
  into two parts, parallel and 

orthogonal to X ±
 . Then we obtain from Eq. (15) 

0
( ) (exp( ) , ) ((1 ) , ( ))( ) ,

( , ) ( , )
d t iLt X K X ti t

dt X X
σ σω

σ σ
± ± + ± ± +

±
± + ± +

X − −
= − = X −



 

0
( , ) ( , ) ,
( , ) ( , )
X Xi
X X

σ σω
σ σ

± + ± +

± + ± +

= − =
 

            (16) 

where X iLX± ±=  and (1 )K Q X± ± ±= − .  

Next we separate ( )tσ+  into two parts, parallel and 

orthogonal to σ+ , and using the useful relations 

0 ,fL σ ω σ+ +=  0,fQ L σ± + =  ( ) 0,f m mL Q X± + −  

since P σ σ+− + += , from Eq. (11) it follows that K±  

and σ+  are orthogonal to each other, i.e.,  

( , ) 0Q σ± + = .  

When a external electromagnetic radiation with 
angular frequency ω  and amplitude 0H  is 

incident upon a system along the z − axis, a electron 
spin transition occurs at around zω ω= . Then we 

obtain  

( )'2
"

2 2
. ',0

' '
( ) .

4 ( ) [ ]

z k k
NT

CNT
k k z

dk f f k I k k I k
Na

A i

σ σ

σ

χ ω
π ω ω ω

+∞

− −
−∞

±
±

−
=

− +Γ

∫
∑



(17) 
The power absorption delivered to the system is 
given by 

[ ]'2 2
" 0

0 2 22
0

( )
1( ) Re ( ) .
2 ( ) ( )

CNT
z k k

NT
CNT z CNT CNT

z

W dk f f
H aP H N

A h S W

σ σω
ω χ ω ω

ω ω ω ω

+∞

+−
−∞

±

± ±

−
 = =     − − +   

∫

(18) 
We consider the term 

[ ] ( ) ( )CNT CNT CNTiS Wω ω ω± ± ±Γ ≡ +  where the 
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line-shift in ESR spectra is { }( ) Im [ ]CNT CNTS ω ω± ±= Γ  

and the ESR line-width is { }( ) Re [ ]CNT CNTW ω ω± ±= Γ . 

The ( )CNTS ω±
 and ( )CNTW ω±  terms in the 

denominator of the spin susceptibility are the 
line-shape formula of the absorption power. The 
line-shape is important for understanding the working 
in CNT. The absorption power caused by external 
radiation can be expressed by a term of the spin 

susceptibility that is proportional to the imaginary 
part of the spin susceptibility and the square of the 
amplitude of the external radiation. The distribution 
function can be expressed as 

, ', ' '( ) / ( )k k k k k kF f fσ σ σ σ σδ ε ε= − − − , we obtain 

the line-widths formula: 

'
, ',2

, ',

( ) ( )[ ] ( ) ( )EPR HF k HF k
xx k k

k k k z

H Hn Fσ σ
σ

σ σ

πω ω γ ω δ
ε ω+−Γ ≈

−∑ 

 

'
, ',2

, ', '

( ) ( )(0) HF k HF k
zz k k

k k k z

H H Fσ σ
σ

σ σ

π γ δ
ε ω

+
+∑ 

 

[ ]
2

'
, '2 2 2 2

, ', '

2 ( )( )( ) ( ) 1 .
( )

k HF k
xx k k k

k k k z

Hn F fσ σ
σ σ

σ σ

ε ωπ ω γ ω δ
ε ω ω

+
+ −

 − − 
∑  

 

(19) 
In the vicinity of each valley, that leads to the 

electron distribution function in the form 18  

*
, 0

2 exp( / ).
2k k B

k B

f k T
A m k Tσ σ

σ

p e= −∑       (20) 

We calculate the line-widths of CNT for the quantum 
limit. We note that the characteristic feature of the 
line-widths are determined by the functional 

dependence of [ ]CNT ω±Γ  on ω . In Eq. (16), the 

factor 'k kf fσ σ−  is not zero only for the states near 

 

             
Figure 2. The line-profile function versus ω . Its poles are denoted by lω ’s, and 'kkΠ ’s are the solutions of Eq. (19). 
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Fermi level. But its dependence on k  is immaterial 

because the statistical nature of CNT
±Γ  is almost 

independent of them. From Eq. (19) we can easily 

see that [ ]CNT ω±Γ  has poles at /kω ε= ±  , 

/k zω ε ω= ± + , and that if we let lω  and 1lω +  

be any two neighboring poles 1( )l lω ω +<  such as 
CNT
±Γ  goes to positive infinity when 0lω ω= +  

and to negative infinity when 0lω ω= − . Therefore, 

as CNTi ±Γ  is monotonically decreasing in the region 

1l lω ω ω +< < , the equation [ ] 0CNT
z iω ω ω±− − Γ = , 

will have one and only one solution in this region. 
We called it ',0kkΠ  and the line-profile formula 

versus ω  are illustrated in Fig. 2. Electron spin 
resonance for the quantum limit can be realized when 
hyperfine interaction of electrons is not too strong. 

Examining the nature of CNT
±Γ  carefully, we find that 

there is one solution of Eq. (19) very near zω ω= , 

which will be called ',0kkΠ . As a first order 

approximation we put ',0 [ ]CNT
kk z ziω ω±Π = Γ , for our 

calculation is meaningful only in the lowest order. 
Then we have { }2 2

',0 '1 (2 )kk z z kkω ωΠ = − ∆ , where 
1 1

' (2 )kk kπ ε− −∆ = ∑ . The value of 'kk∆  depend on 

the distribution of energy levels, but it is positive and 
in most cases of order of unity.  
We consider a zigzag SWNT with (8,0) and assume 

1 µΓ = eV . Other parameters are known to be: 

0.011x = , 2
0 3 / 4bΩ = , 0.249b = nm , 

0 0 / bγ γ= Ω , and / 2 22.5hfa π = MHz . Through 

numerical calculations, Fig. 3 presents the calculated 
line-width as a function of temperature at various 
magnetic field strengths. The line-width decreases 
with increasing temperature due to the hyperfine 

       
Figure 3. Calculated line-widths in a (8,0) zigzag SWNT as a function of temperature for different values of 
magnetic field strength. 
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interaction of electrons. From the line-widths, on the 
order of 0.5 , 1.0 , 1.5 , 2.0 , and 3.0 T , we can 
see the broadening effect of line-widths near the 
resonance peak. Line-widths also show gradual 
decrease as B  becomes larger. 
 
 
Concluding remarks 
 
So far we consider ESR in a SWNT through the HFI 
with nuclear spins 1/ 2I =  of 13C  isotopes 
introduced earlier in terms of POT. The theory was 
applied to examination of temperature dependence of 

the line-widths for the quantum limit. We can see that 
the line-width decreases exponentially as the 
temperature increases. The spin relaxation time show 
gradual decrease as magnetic field B  becomes 
larger. The analysis reveals the peculiarities in spin 
relaxation inherent to one dimensional system at low 
temperature and weak magnetic fields. The 
line-width is barely affected in the high-temperature 
region because there is no correlation between the 
resonance fields and the distribution function. 
Therefore, we wish to emphases that POT provides a 
useful method for the analysis presented here, as 
compared to other methods.
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