• Title/Summary/Keyword: One-step synthesis

Search Result 215, Processing Time 0.028 seconds

Effects of Sensory Integration Therapy on Sensory. Motor Development and Adaptive Behavior of Cerebral Palsy Children (감각통합치료가 뇌성마비 아동의 감각.운동발달 및 적응행동에 미치는 영향)

  • Kwon, Hye-Jeoung
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.977-987
    • /
    • 2001
  • The purpose of this study was to examine the effects of sensory integration therapy (SIT) on sensory' motor development and adaptive behavior of cerebral palsy children. The design of this study was quasi experiments with a non-equivalent pre- and post-test control design. Subjects of the study were arbitrarily chosen based on predetermined selection criteria among the cerebral palsy children who were treated as out-patients at two rehabilitation hospitals one in Seoul, and the other in Kyunggi-do. The study was conducted between early April and late July in 2000. Fifteen children were in the experimental group and eleven in the control group. The allocation was done based on ease of experimental treatment. A five-step SIT program was devised from a combination of SIT programs suggested by Ayres(1985) and Finks(1989), and an author-designed SIT program for cerebral palsy children. The experimental group was subjected to 20 to 30 minutes of SIT per session. two sessions a week for ten -week period. The effects of SIT were measured with respect to 9 sub-areas that can be administered to cerebral palsy children out of a total of 17 sub-areas in the Southern California Sensory Integration Test (SCSIT) developed by Ayres (1980). In addition. the scale developed by Russell (1993) for Gross Motor Function Measure (GMFM). and Perception Motor Development Test developed by 中司利一 et al.(1987) were also applied. Adaptive behavior was analyzed using guidelines in two unpublished documents - School-Age Checklist for Occupational Therapy by the Wakefield Occupational Therapy Associates, and the OTA-Watertown Clinical Assessment by the Watertown Occupational Therapy Associates-, and an author-developed Adaptive Behavior Checklist. Collected data were statistically analyzed by SPSS PC for chi square test, Mann-Whitney test, Wilcoxon signed rank test, and paired t-test. The results were as follows: 1. In sensory development, the experimental group exhibited a score increase compared to the control group, but the difference was not statistically significant, Although the experimental group showed improvements in all. 9 sub-areas compared to the control group, only right-left discrimination exhibited statistically significant change. 2. In gross motor development, the experimental group showed improvements in score compared to the control group, but it was not statistically significant. In fine motor development, the experimental group exhibited statistically significant improvements compared to the control group. In sub-area analysis, figure synthesis showed positive change. 3. In adaptive behavior development, post-experimental adaptive behavior scores were higher compared to pre-experimental scores with statistical significance. Furthermore, sub-areas emotional behavior, perception behavior, gross-fine motor function, oral-respiration function, motor behavior, motor planning, and adaptive response exhibited higher scores after SIT. In conclusion SIT was found to be partially effective in sensory and fine motor development, effective in all adaptive behavior areas, and not effective in gross motor development. Thus, this study has shown that SIT is an effective intervention for sensory development, fine motor development, and adaptive behavior for cerebral palsy children. But, for the effectiveness of SIT on gross motor development, further studies employing longer-time experiments are recommended.

  • PDF

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF

Production of vegetable oil in biomass (바이오매스에서 식물지방 생산)

  • Kim, Hyun Uk;Lee, Kyeong-Ryeol;Kim, Eun-Ha;Roh, Kyung Hee;Kang, Han Chul;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.107-115
    • /
    • 2014
  • Vegetable oils (triacylglycerols) produced mainly in seeds of plants are used for valuable foods that supply essential fatty acids for humans as well as industrial raw materials and biofuel production. As the demanding for vegetable oils has increased, plant metabolic engineering to produce triacylglycerols in biomass such as leaves has been considered and explored for alternative source of vegetable oils. Leaves are genetically programmed to supply the fixed carbon by photosynthesis to other organs for plant development and growth. Therefore, in order to produce and accumulate triacylglycerols in leaves, one should take account of multiple metabolic pathways such as carbon flux, competition of carbohydrate and fatty acid biosynthesis, and triacylglycerols turnover in leaves. The recent metabolic engineering strategy has showed potential in which the co-expression of three genes WRINKLED1, DGAT1, and OLEOSIN involved in the critical step for increasing the fatty acid synthesis, accumulating triacylglycerols, and protecting triacylglycerols, respectively produced higher amount of vegetable oils in leaves. Developing of genetically engineered plants producing vegetable oil in biomass at non-agricultural lands will be promising to the future success of the field.

A Study on Properties of the Urethane Prepolymer Synthesis with Polyether-diol and Aromatic Diisocyanate System (폴리에테르-디올과 방향족 디이소시아네이트계의 우레탄 프리폴리머 합성에 따른 특성연구)

  • Lee, Hyun-Joo;Kim, Kwang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.491-496
    • /
    • 1998
  • The composition of isocyanates and polyols influence prepolymeric properties of adhesive and calking sealant based on polyurethanes (PU). One component moisture curing prepolymers, which reacted with surface humidity of substrate, were synthesized in several kinds of composition. Reactivity, structural change and properties of the prepolymers were studied as a preliminary step to manufacture PU based adhesive and sealant. To study the effects of mole ratio ([NCO]/[OH]), we used toluene diisocyanate (TDI), 4, 4'-diphenylmethane diisocyanate (MDI), and ether-polyols such as PTMG and PPG which have good resistance to hydrolysis and excellent low-temperature properties. The each prepolymers could be prepared in different molecular weight without any significant structural change. The mole ratio 1.78 of [NCO] to [OH] showed the fastest reactivity. It was confirmed that effect of polyols was larger than that of isocyanates on the prepolymer in reactivity. Several kinds of compounds were manufactured with each prepolymer, and tensile and properties were tested. And the optimum quantity of curing accelerator for the PU was 0.05~0.1%. In the tensile test, TDI based PU was superior to MDI based PU, and also PTMG based PU was superior PPG based PU.

  • PDF

Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid (1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구)

  • Jin, Yu Ran;Jung, Yoon Ho;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by $^1H$-NMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and $70^{\circ}C$ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 $CO_2/IL$(g/kg) at $30^{\circ}C$, 13 bar.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Clinical Significance of Argyrophilic Nucleolar Organizer Regions(AgNORs) In Squamous Cell Carcinoma of the Lung (편평세포폐암에서 Argyrophilic Nucleolar Organizer Regions(AgNORs)의 임상적의의)

  • Han, Seung-Beom;Jeon, Young-June;Lee, Sang-Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.513-521
    • /
    • 1995
  • Background: Nucleolar organizer regions(NORs) are chromosomal segments encoding for ribosomal RNA and associated with argyrophilic nonhistone protein. Ribosomal RNA genes ultimately direct ribosome and protein synthesis, and it has been suggested the numbers of NORs detected in the cell may reflect nuclear and cellular activity. This study was performed to evaluate the applicability of AgNORs to the diagnosis of squamous cell carcinoma of the lung. Method: The one step silver methods(AgNORs) was used to stain NORs in the routinely processed, formalin fixed, paraffin embedded sections of 36 cases of squamous cell carcinoma of the lung obtained by surgical resection of primary tumor. In each specimen, 100 tumor cells and 100 normal cells adjacent to the tumor chosen at random were examined under an oil immersion lens at a magnification of ${\times}1000$. The mean number of AgNORs per nucleus was calculated for each specimen. Results: The mean number of AgNORs per nucleus(mAgNORs) of normal bronchial epithelium and squamous cell carcinoma of the lung was $1.74{\pm}0.25$ and $4.05{\pm}0.80$, respectively. The difference of mAgNOR between normal and tumor tissue was statistically significant(p<0.001). There was no statistical difference among tumors of different stages. The difference of mAgNOR between normal and tumor tissue was statistically significant in each TNM stage(p<0.05). Conclusion: Mean AgNOR count may be used as a useful marker for the differential diagnosis of benignancy and malignancy, and proliferative activity of the cell in squamous cell carcinoma of the lung. But there was no statistical difference in mean AgNOR count among tumors of different surgical stages. Further studies for the application of mAgNORs to the diagnosis of other histologic types and cytologic specimens of the lung cancer are needed.

  • PDF

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.