Browse > Article
http://dx.doi.org/10.7464/ksct.2013.19.3.320

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC)  

Kim, Sang Kyum (Graduate School of Green Energy Technology, Chungnam National University)
Park, Ji Yun (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Hwang, Sun Choel (Graduate School of Green Energy Technology, Chungnam National University)
Lee, Do Kyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Sang Heon (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Rhee, Young Woo (Graduate School of Green Energy Technology, Chungnam National University)
Han, Moon Hee (Graduate School of Green Energy Technology, Chungnam National University)
Publication Information
Clean Technology / v.19, no.3, 2013 , pp. 320-326 More about this Journal
Abstract
Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.
Keywords
Direct methanol fuel cell; Electrocatalysts; Methanol oxidation; Unit cell performance; Radiation induced reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Han, D. M., Guo, Z. P., Zhao, Z. W., Zeng, R., Meng, Y. Z., Shu, D., and Liu, H. K., "Polyoxometallate-stabilized Pt-Ru Catalysts on Multiwalled Carbon Nanotubes: Influence of Preparation Conditions on the Performance of Direct Methanol Fuel Cells," J. Power Source, 184(2), 361-369 (2008). Impact factor: 4.283   DOI   ScienceOn
2 Han, D. M., Guo, Z .P., Zeng, R., Kim, C. J., Meng, Y. Z., and Liu, H. K., "Multiwalled Carbon Nanotube-supported Pt/Sn and Pt/Sn/PMo12 Electrocatalysts for Methanol Electro-oxidation,". Int. J. Hyd. E., 34(5), 2426-2434 (2009).   DOI   ScienceOn
3 AriCo, A. S., Srinivasan, S., and Antonucci, V., "DMFCs: From Fundamental Aspects to Technology Development," Fuel Cells, 1(2), 133-161 (2001).   DOI   ScienceOn
4 Liu, P., and Norskov, J. K., "Kinetics of the Anode Processes in PEM Fuel Cells - The Promoting Effect of Ru in PtRu Anodes." Fuel Cells, 1(3-4), 192-201 (2001).   DOI   ScienceOn
5 Frelink, T., Visscher, W., and Veen, J. A. R. V., "On the Role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt," Surf. Sci., 335, 353-360 (1995).   DOI   ScienceOn
6 Samjeske, G., Wang, H., Loffler, T., and Baltruschat, H., "CO and Methanol Oxidation at Pt-electrodes Modified by Mo," Electrochim. Acta, 47(22-23), 3681-3692 (2002).   DOI   ScienceOn
7 Mneyuki, T., and Hideaki, K., "$H_2$ Dissociative Adsorption on Strained/CO-Precovered Pt," Jpn. J. Appl. Phys., 45, 1219-1221 (2006).   DOI
8 Hyun, M. S., Kim, S. K., Lee, B. R., Peck, D. H., Shul, Y. G., and Jung, D. H., "Effect of $NaBH_4$ Concentration on the Characteristics of PtRu/C Catalyst for the Anode of DMFC Prepared by the Impregnation Method," Catal. Today, 132, 138-145 (2008).   DOI   ScienceOn
9 Sim, K. S., Kwen, H. D., and Choi, S. H., "Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide," JNM, 2011, 1-8 (2011).
10 Parsons, R., and Vandernoot, T., "The Oxidation of Small Organic Molecules. A Survey of Recent Fuel Cell Related Research," J. Electroanal. Chem., 257(1-2), 9-45 (1988).   DOI   ScienceOn
11 Xu, W. L., Lu, T. H., Liu, C. P., and Xing, W., "Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell," J. Phys. Chem. B., 109, 14325-14330 (2005).   DOI
12 Farah, D., Brian, M. L., and Raymond, E. S., "Oxidative Transformation of Intermetallic Nanoparticles: An Alternative Pathway to Metal/Oxide Nanocomposites, Textured Ceramics, and Nanocrystalline Multimetal Oxides," Chem. Mater., 19(18), 4545-4550 (2007).   DOI   ScienceOn
13 Wang, W., Wang, R., Wang, H., Ji, S., Key, J., Li, X., Lei, Z., "An Advantageous Method for Methanol Oxidation: Design and Fabrication of a Nanoporous PtRuNi Trimetallic Electrocatalyst," J. Power Source, 196(22), 9346-9351 (2004).
14 Wang, W., Wang, R., Wang, H., Ji, S., Key, J., Li, X., and Lei, Z., "An Advantageous Method for Methanol Oxidation: Design and Fabrication of a Nanoporous PtRuNi Trimetallic Electrocatalyst," J. Power Source, 196(22), 9346-9351 (2011).   DOI   ScienceOn
15 Han, D. M., Guo, Z. P., Zhao, Z. W., Zeng, R., Meng, Y. Z., Shu, D., and Liu, H. K., "Polyoxometallate-stabilized Pt-Ru Catalysts on Multiwalled Carbon Nanotubes: Influence of Preparation Conditions on the Performance of Direct Methanol Fuel Cells," J. Power Source, 184(2), 361-369 (2008).   DOI   ScienceOn
16 Jeyabharathi, C., Mathiyarasu, J., and Phani, K. L. N., "Methanol Tolerant Oxygen-reduction Activity of Carbon Supported Platinum-bismuth Bimetallic Nanoparticles," J. Appl. Electrochem., 39(1), 45-53 (2009).   DOI   ScienceOn
17 Prabhuram, J., Zhao, T. S., Wong, C. W., and Guo, J. W., "Synthesis and Physical/electrochemical Characterization of Pt/C Nanocatalyst for Polymer Electrolyte Fuel Cells," J. Power Source, 134, 1-6 (2004).   DOI   ScienceOn
18 Zhang, X., Zhang, F., and Chan, K. Y., "Preparation of Pt-Ru-Co Trimetallic Nanoparticles and Their Electrocatalytic Properties," Catal. Commun., 5(12), 749-753 (2004).   DOI   ScienceOn
19 Liu, C. W., Chang, Y. W., Wei, Y. C., and Wang, K. W., "The Effect of Oxygen Containing Species on the Catalytic Activity of Ethanol Oxidation for PtRuSn/C Catalysts," Elec. Acta., 56(5), 2574-2581 (2011).   DOI   ScienceOn
20 Yang, X. L., Allen, R. G., Scott, K., Christenson, P., and Roy, S., "A Comparative Study of PtRu and PtRuSn Thermally Formed on Titanium Mesh for Methanol Electro-oxidation," J. Power Source, 137(2), 257-263 (2004).   DOI   ScienceOn
21 Poh, C. K., Tian, Z., Gao, J., Liu, Z., Lin, J., Feng, Y. P., and Fabing, S., "Nanostructured Trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC Catalysts for Methanol Electrooxidation," J. Mater. Chem., 22, 13643-13652 (2012).   DOI   ScienceOn
22 Kim, S. K., Kwen, H. D., and Choi, S. H., "Radiation-induced Synthesis of Vinyl Copolymer Based Nanocomposites Filled with Reactive Organic Montmorillonite Clay" Radiat. Phys. Chem.., 81, 519-523 (2012).   DOI   ScienceOn
23 Lee, S. H., Kim, D. J., and Yoon, Y. S., "Electrochemical Characterization of Hydrothermally Synthesized Pt-Ru-Ni-P Catalyst for Direct Methanol Fuel Cell," Jpn. J. Appl. Phys., 52, 35001-35006 (2013).   DOI
24 Oh, S. D., Kim, M. R., Choi, S. H., Chun, J. H., Lee, K. P., Gopalan, A., Hwang, C. G., Kim, S. H., and Oh, J. H., "Radiolytic Synthesis of Pd-M (M = Ag, Au, Cu, Ni and Pt) Alloy Nanoparticles and Their Use in Reduction of 4-nitrophenol," J. Ind. Eng. Chem., 14, 687-692 (2008).   과학기술학회마을   DOI   ScienceOn
25 Yang, D. S., Sim, K. S., Kwen, H. D., and Choi, S. H., "Onestep Preparation of Pt-M@FP-MWNT Catalysts (M = Ru, Ni, Co, Sn, and Au) by g-Ray Irradiation and Their Catalytic Efficiency for CO and MeOH" J. Ind. Eng. Chem., 18(1), 538-545 (2012).   DOI   ScienceOn
26 IEA, "World Energy Outlook," International Energy Agency, (2011).
27 Greene, D. L., Hopson, J. L., and Li, J., "Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective," Energy Policy, 34(5), 515-531 (2006).   DOI   ScienceOn
28 Shipley, A. M., and Elliott, R. N., "Stationary Fuel Cells: Future Promise, Current Hype," American Council for a Energy-efficient Economy, Report No. IE041, 2004.
29 Adamsona, K., A., and Pearson, P., "Hydrogen and Methanol: a Comparison of Safety, Economics, Efficiencies and Emissions," J. Power Source, 86(1-2), 548-555 (2000).   DOI   ScienceOn
30 Hamnett., A., "Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell," Catal. Today, 38(4), 445-457 (1997).   DOI   ScienceOn
31 Wanga, Y., Chen, K. S., Mishler, J., Cho, S. C., and Adroher, X. C., "A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research," Appl. Energy., 88, 981-1007 (2011).   DOI   ScienceOn
32 Kamarudin, S. K., and Achmad, F., and Daud, W. R. W., "Over-View on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices" Int. J. Hyd. E., 34(16), 6902-6916 (2009).   DOI   ScienceOn
33 Yuan, Z., Zhang, Y., Fu, W., Li, Z., and Liu, X., "Investigation of a Small-volume Direct Methanol Fuel Cell Stack for Portable Applications," Energy, 51(1), 462-467 (2013).   DOI   ScienceOn
34 Wee, J. H., "Which Type of Fuel Cell is More Competitive for Portable Application: Direct Methanol Fuel Cells or Direct Borohydride Fuel Cells?," J. Power Source, 161(1), 1-10 (2006).   DOI   ScienceOn