• 제목/요약/키워드: One-dimensional simulations

검색결과 299건 처리시간 0.034초

Nudging of Vertical Profiles of Meteorological Parameters in One-Dimensional Atmospheric Model: A Step Towards Improvements in Numerical Simulations

  • Subrahamanyam, D. Bala;Rani, S. Indira;Ramachandran, Radhika;Kunhikrishnan, P. K.
    • Ocean Science Journal
    • /
    • 제43권4호
    • /
    • pp.165-173
    • /
    • 2008
  • In this article, we describe a simple yet effective method for insertion of observational datasets in a mesoscale atmospheric model used in one-dimensional configuration through Nudging. To demonstrate the effectiveness of this technique, vertical profiles of meteorological parameters obtained from GLASS Sonde launches from a tiny island of Kaashidhoo in the Republic of Maldives are injected in a mesoscale atmospheric model - Advanced Regional Prediction System (ARPS), and model simulated parameters are compared with the available observational datasets. Analysis of one-time nudging in the model simulations over Kaashidhoo show that incorporation of this technique reasonably improves the model simulations within a time domain of +6 to +12 Hrs, while its impact on +18 Hrs simulations and beyond becomes literally null.

High-Resolution Simulations of the Nuclear Star-Forming Ring

  • 김성수
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.47.2-47.2
    • /
    • 2013
  • We have performed a set of high-resolution simulations of nuclear star-forming ring that results in an inward gas migration from the galactic disk. Our simulations consider gas heating/cooling, star formation, and supernova feedback. The galactic potential was obtained from a snapshot of a 6.3 million particle simulation of a galactic disk at 1 Gyr, which manifests spiral arms and pseudo-bulge. The potential was modeled with a combination of 3-dimensional spherical (for the pseudo-bulge) and 2-dimensional cylindrical (for the disk) multipole expansion technique. With such a potential model, one can easily set up various realistic 3-dimensional potential models by slightly changing the expansion coefficients. We have performed a set of simulations with a few million gas particles covering the central ~6 kpc of the disk for different pseudo-bulge sizes and non-axisymmetry, and we report the dependence of the gas inflow rate, size of the star-forming ring, and star-formation rate in the ring on the size and strength of the non-axisymmetry in the bulge.

  • PDF

Large Scale Gap 시험의 전산모사연구 (Study on the Computational Simulation of Large Scale Gap Test)

  • 이진성;박정수;이영신
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.932-940
    • /
    • 2011
  • This study describes computational simulation results in 2-dimensional and 3-dimensional space concerning large scale gap test(LSGT) by using commercial hydrocode such as AUTODYN and LS-DYNA to analyze the detonation phenomenons of high explosives. To consider the possibilities of LSGT simulation, we used Lee - Tarver reaction rate model of PBX-9404 and Comp-B which were implemented AUTODYN's material library. Also we have tried the diverse numerical schemes such as Lagrangian, Eulerian and ALE(Arbitary Lagrangian Eulerian), SPH(Smoothed Particle Hydrodynamics) in LSGT simulations. After LSGT simulations, we compared the simulation results with published results to verify the LSGT simulations. According to the LSGT simulations, we have concluded as follows. In 2-dimensional and 3-dimensional space, Lagrangian solver provided the most reliable results based on analysis time and accuracy. When using two hydrocodes in 2-dimensional space, the simulation results are almost same except one explosive model. We have verified the modeling method and simulation results of the LSGT by using the commenrcial hydrocode in this study.

Cooperative Communication with Different Combining Techniques in One-Dimensional Random Networks

  • Duy, Tran Trung;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제12권1호
    • /
    • pp.13-19
    • /
    • 2012
  • In this paper, we investigate cooperative transmission in one-dimensional random wireless networks. In this scheme, a stationary source communicates with a stationary destination with the help of N relays, which are randomly placed in a one-dimensional network. We derive exact and approximate expressions of the average outage probability over Rayleigh fading channels. Various Monte-Carlo simulations are presented to verify the accuracy of our analyses.

슈퍼컴퓨터를 이용한 천체물리학 유체의 연구 (Numerical Astrophysics Using Parallel Supercomputers)

  • 류동수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.9-14
    • /
    • 2001
  • Astrophysics has been one of the disciplines which utilize actively supercomputers for their researches. In this paper, studies of astrophysical flows by large scale numerical simulations in supercomputers are discussed. The followings are described: 1) characteristics of astrophysical flows, 2) numerical codes to study astrophysical flows, 3) performance of the codes in parallel supercomputers. A couple of examples of such studies are briefly presented: 1) three-dimensional evolution of the nonlinear Kelvin-Helmholtz instability in a magnetized medium, 2) three-dimensional simulations of astrophysical jets in a magnetized medium.

  • PDF

3차원에서의 열차 충돌사고 시뮬레이션 연구 (Simulation of Train Crashes in Three Dimensions)

  • 한형석;구정서
    • 한국철도학회논문집
    • /
    • 제5권3호
    • /
    • pp.187-195
    • /
    • 2002
  • It is important to predict the crash behavior of trains to improve their crashworthiness. This paper investigates the simulation of high-speed train crashes in three dimensions using multibody dynamics. At present, little is known about three-dimensional crash simulations. This study shows that it is possible to simulate overriding and lateral buckling, including results from one- or two-dimensional simulations. Several parameters, however, such as computational time and large deformation of structures, need further investigation.

Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling

  • Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.287-295
    • /
    • 2020
  • Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.

Design Sensitivity in Quasi-One-Dimensional Silicon-Based Photonic Crystalline Waveguides

  • Kinoshita, Takeshi;Shimizu, Akira;Iida, Yukio;Omura, Yasuhisa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권1호
    • /
    • pp.55-61
    • /
    • 2003
  • This paper describes how the optical properties of a quasi-one-dimensional photonic crystalline waveguide having a periodic air cavity are influenced by various structural parameters; the electromagnetic fields are simulated using the finite-difference time-domain method. The simulations considered four design parameters: cavity size, defect size, lattice constant, and number of cavity. The parameter sensitivity of the photonic bandgap property of the waveguide having air cavities is examined. A couple of significant design guidelines are obtained. We show that the quasi-one-dimensional photonic crystalline waveguide has significant unrealized potential.

가사경수형 원자로에서의 제논 영향으로 인한 축방향 출력진동 시간최적제어 (Time-Optimal Control of Xenon-Induced Axial Power Oscillations in Pressurized Water Reactor)

  • Won-Hyo Yoon
    • 대한전기학회논문지
    • /
    • 제33권3호
    • /
    • pp.91-99
    • /
    • 1984
  • Time-optimal control for dmping a one-dimensional xenon-induced spatial power oscillations in pressurized water reactor is studied. Linearized system equations describing the spatial xenon oscillations have been derived based on lambda mode analysis. Optimal control strategies, eventually bang-bang controls, have been drawn applying Pontryagins Minimum Principle, subject to a band constraint on available contros strength. Validity of the linearized system equations and optimal control strategies derived has been demonstrated through conputer simulations which incorporate the finite difference method for one dimensional axial geometry, for the soulution of the two-group neutron diffusion equations. The results obtained through computer simulations show that xenon-induced transients can be suppressed successfully with bang-bang control.

  • PDF

Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex

  • Marcos S. Sena;Yassin A. Hassan
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3320-3325
    • /
    • 2023
  • The scaled water-cooled Reactor Cavity Cooling System (RCCS) experimental facility reproduces a passive safety feature to be implemented in Generation IV nuclear reactors. It keeps the reactor cavity and other internal structures in operational conditions by removing heat leakage from the reactor pressure vessel. The present work uses Flownex one-dimensional thermal-fluid code to model the facility and predict the experimental thermal-hydraulic behavior. Two representative steady-state cases defined by the bulk volumetric flow rate are simulated (Re = 2,409 and Re = 11,524). Results of the cavity outlet temperature, risers' temperature profile, and volumetric flow split in the cooling panel are also compared with the experimental data and RELAP system code simulations. The comparisons are in reasonable agreement with the previous studies, demonstrating the ability of Flownex to simulate the RCCS behavior. It is found that the low Re case of 2,409, temperature and flow split are evenly distributed across the risers. On the contrary, there's an asymmetry trend in both temperature and flow split distributions for the high Re case of 11,524.