• Title/Summary/Keyword: One-chip Board

Search Result 62, Processing Time 0.027 seconds

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

An Implementation of a VoIP Phone system using ChipSet (ChipSet을 이용한 VoIP PHONE 시스템 개발)

  • 안혁종;황승용;이진형;양희성;이상연;조성호
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.105-108
    • /
    • 2000
  • CTI[1]의 응용 영역 중에서 인터넷 폰이 최근 뜨거운 관심의 대상으로 떠오르고 있다. 인터넷을 이용한 음성전달 기술은 인터넷의 성장 보급과 더불어 나날이발전 하고 있는데, 이러한 음성전달기술을 이용해 개발된 소프트 웨어를 통칭해서 인터넷 폰이라고 부르고 있다. 이러한 변화 속에서 비용의 절감과 비디오 전화, 영상회의와 같은 응용에 적용할 수 있는, 본 개발은 One Encoder One Decoder 지원의 VoIP(Voice over Internet Protocol) Phone에 관한 것으로, 특히 압축하여 인터넷 망에 접속시켜 사용할 수 있는 PC 장착형 One Board 형태의 시스템을 구현하였다. 이 Board에 사용 된 칩셋은 국내 회사인 C&S Technology 사의SEAGUL723이며, PC인터페이스는 PCI(Peripheral Component Interconnect) 버스 방식을 이용하였다. 주요 연구내용에 있어서 하드웨어 부분은 내선제어모듈,PCI 모듈, 칩셋을 이용한 음성신호처리 모듈, Board제어 모듈 등이 있으며, 소프트 웨어 설계 부분에 있어서는 하드웨어 구동을 위한 시스템 드라이브, Application과 인터넷 상의 VoIP 통신을 위한 소프트웨어, 사용자를 위한 User Interface 소프트 웨어 등이 있다.

  • PDF

One Board Controller Design with ATmega 128 Chip for Manetic Levitation System (ATmega 128 소자를 이용한 자기부상계 제어용 원-보드 컨트롤러의 설계)

  • Choung, K.G.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • Magnetic levitation system is nonlinear and inherently unstable, so it is difficult to control. Analog control circuit was widly used as the controller of magnetic levitation system, but digital controller is now substituted for analog controller according to development of digital electronics. In this study, Atmel AVR series, ATmega 128 which is a kind of $\mu$-processor for digital controller is used because the chip is cheap and popular. We designed and made ATmega 128 one-board controller and aimed to verify validity through the experiance of levitation response.

Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips (플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

A Study on Physical and Mechanical Properties of Sawdustboards combined with Polypropylene Chip and Oriented Thread (폴리프로필렌사(絲)칩과 배향사(配向絲)를 결체(結締)한 톱밥보드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-41
    • /
    • 1988
  • For the purpose of utilizing the sawdust having poor combining properties as board raw material and resulting in dimensional instability of board, polypropylene chip (abbreviated below as PP chip) or oriented PP thread was combined with sawdust particle from white meranti(Shorea sp.). The PP chip was prepared from PP thread in length of 0.25, 0.5, 1.0 and 1.5 cm for conventional blending application. Thereafter, the PP chip cut as above was combined with the sawdust particle by 3, 6, 9, 12 and 15% on the weight basis of board. Oriented PP threads were aligned with spacing of 0.5, 1.0 and 1.5cm along transverse direction of board. The physical and mechanical properties on one, two and three layer boards manufactured with the above combining conditions were investigated. The conclusions obtained at this study were summarized as follows: 1. In thickness swelling, all one layer boards combined with PP chips showed lower values than control sawdustboard, and gradually clear decreasing tendendy with the increase of PP chip composition. Two layer board showed higher swelling value than one layer board, but the majority of boards lower values than control sawdustboard. All three layer boards showed lower swelling values than control sawdustboard. 2. In the PP chip and oriented thread combining board, the swelling values of boards combining 0.5cm spacing oriented thread with 1.0 or 1.5cm long PP chip in 12 and 15% by board weight were much lower than the lowest of one or three layer. 3. In specific gravity of 0.51, modulus of rupture of one layer board combined with 3% PP chip showed higher value than control sawdustboard. However, moduli of rupture of the boards with every PP chip composition did not exceed 80kgf/cm2, the low limit value of type 100 board, Korean Industrial Standard KS F 3104 Particleboards. Moduli of rupture of 6%, 1.5cm-long and 3% PP chip combined boards in specific gravity of 0.63 as well as PP chip combined board in specific gravity of 0.72 exceeded 80kgf/$cm^2$ on KS F 3104. Two layer boards combined with every PI' chip composition showed lower values than control sawdustboard and one layer board. Three layer boards combined with.1.5cm long PP chip in 3, 6 and 9% combination level showed higher values than control sawdustboard, and exceeded 80kgf/$cm^2$ on KS F 3104. 4. In modulus of rupture of PP thread oriented sawdustboard, 0.5cm spacing oriented board showed the highest value, and 1.0 and 1.5cm spacing oriented boards lower values than the 0.5cm. However, all PP thread oriented sawdustboards showed higher values than control saw-dustboard. 5. Moduli of rupture in the majority of PP chip and oriented thread combining boards were higher than 80kgf/$cm^2$ on KS F 3104. Moduli of rupture in the boards combining longer PP chip with narrower 0.5cm spacing oriented thread showed high values. In accordance with the spacing increase of oriented thread, moduli of rupture in the PP chip and oriented thread combining boards showed increasing tendency compared with oriented sawdustboard. 6. Moduli of elasticity in one, two and three layer boards were lower than those of control sawdustboard, however, moduli of elasticity of oriented sawdustboards with 0.5, 1.0 and 1.5cm spacing increased 20, 18 and 10% compared with control sawdustboard, respectively. 7. Moduli of elasticity in the majority of PP chip and oriented thread combining boards in 0.5, 1.0 and 1.5cm oriented spacing showed much higher values than control sawdustboard. On the whole, moduli of elasticity in the oriented boards combined with 9% or less combination level and 0.5cm or more length of PP chip showed higher values than oriented sawdustboard. The increasing effect on modulus of elasticity was shown by the PP chip composition in oriented board with narrow spacing. 8. Internal bond strengths of all one layer PP chip combined boards showed lower values than control sawdust board, however, the PP chip combined boards in specific gravity of 0.63 and 0.72 exceeded 1.5kgf/$cm^2$, the low limit value of type 100 board and 3kgf/$cm^2$, type 200 board on KS F 3104, respectively. And also most of all two, three layer-and oriented boards exceeded 3kgf/$cm^2$ on KS F. 9. In general, screw holding strength of one layer board combined with PP chip showed lower value than control sawdustboard, however, that of two or three layer board combined with PP chip did no decreased tendency, and even screw holding strength with the increase of PP chip composition. In the PP chip and oriented PP thread combining boards, most of the boards showed higher values than control sawdustboard in 9% or less PP chip composition.

  • PDF

Design and Fabrication of the System in Package for the Digital Broadcasting Receiver (디지털 방송 수신용 System in Package 설계 및 제작)

  • Kim, Jee-Gyun;Lee, Heon-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • This paper describes design and fabrication issues of the SiP(System in Package) one-chip for a portable digital broadcasting receiver. It includes RF tuner chip, demodulator chip and passive components for the receiver system. When we apply the SiP one-chip technology to the broadcasting receiver, the system board size can be reduced from $776mm^2$ to $144mm^2$. SiP one-chip has an advantage that the area reduces more 81% than separated chips. Also the sensitivity performance advances -1dBm about 36 channels in the RF weak electric field, the power consumption reduces about 2mW and the C/N keeps on the same level.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Copper Pillar-Tin Bump with Immersion Tin Plating for High-Density Flip Chip Packaging (무전해 주석도금을 이용한 구리기둥-주석범프의 형성과 고밀도 플립칩 패키지 제조방법)

  • Cho, Il-Hwan;Hong, Se-Hwan;Jeong, Won-Cheol;Ju, Gyeong-Wan;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.10-10
    • /
    • 2008
  • Flip chip technology is keeping pace with the increasing connection density of the ICs and is capable of transferring semiconductor performance to the printed circuit board. One of the most general flip chip technology is CPB technology presented by Intel. The CPTB technology has similar benefits with CPB but has simpler process and better reliability characteristics. In this paper, process sequence and structure of CPTB are presented.

  • PDF

Evaluation of Vibration Control Performance for Active Hybrid Mount System Featuring Inertial Actuator (관성형 작동기를 이용한 능동 하이브리드 마운트 시스템의 진동제어 성능 평가)

  • Oh, Jong-Seok;Choi, Seung-Bok;Nguyen, Vien Quoc;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.768-773
    • /
    • 2011
  • This work presents an experimental investigation on vibration control of the active hybrid mount system for naval ships. To reduce unwanted vibrations, this paper proposes an active mount which consists of rubber element, piezostack actuator and inertial mass. The rubber element supports a mass. The piezostack actuator generates a proper control force and supply it to the mount system. To avoid being broken piezostack actuator, an actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is positioned between inertial mass and rubber element. Vibration control performances of the active mount system are evaluated via experiment. To attenuate the unwanted vibrations transferred from upper mass, the feedforward control is designed. In order to implement a control experiment, the active mount system supported by four active mounts is constructed. For realization of the controller, one-chip board is manufactured and utilized. Subsequently, vibration control performances of the proposed active mount system are experimentally evaluated in frequency domains.

Implemention of RCCL on PUMA (PUMA robot에서의 RCCL(robot control C library)의 구현)

  • 배본호;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.24-29
    • /
    • 1991
  • RCCL(Robot Control C Library) is general purpose robot control language. It is programmed with C language and composed of C library. So it is well portable and supports sensor integration control and high level force control algorithms. We implemented RCCL on PUMA. We developed servo controller of DDC(Direct Digital Control). We used intel 8097BH one chip micro controller as CPU. One digital servo board controls three motors. Host computer is IBM PC 386DX-33 with RCCL.

  • PDF