• Title/Summary/Keyword: One Equation Method

Search Result 1,552, Processing Time 0.03 seconds

The obstacle collision avoidance methods in the chaotic mobile robots

  • Youngchul Bae;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.591-594
    • /
    • 2003
  • In this paper, we propose a method to avoidance obstacle in which we assume that obstacle has an unstable limit cycle in the chaos trajectory surface. In order to avoid the obstacle, we assume that all obstacles in the chaos trajectory surface in which has an unstable limit cycle with Van der Pol equation. In this paper show also that computer simulation results are satisfy to avoid obstacle in the chaos trajectory with Chua's circuit equation of one or multi obstacle has an limit cycle with Van der Pol (VDP) efuation and compare to rate of cover in one robot which have random walk and Chua's equation.

  • PDF

Multirate LQG Control Based on the State Expansion (상태 공간 확장에 의한 멀티레이트 LQG 제어)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one Period, the time-varying system equation can be constructed into the time-invariant equation. In this paper, an alternative time-invariant model is proposed, the design method and the stability of the LQG (Linear Quadratic Gaussian) control scheme for the realization are presented. The realization is flexible to construct to the sampling rate variations, the closed-loop system is shown to be asymptotically stable even in the inter-sampling intervals and it has smaller computation in on-line control loop than the previous time-invariant realizations.

  • PDF

A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation (열탄소성 구성방정식 적분을 위한 새로운 알고리즘)

  • 이동욱;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (교류전기철도 급전시스템의 전차선 전압해석)

  • 이승혁;정현수;김진오
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.490-496
    • /
    • 2002
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode far locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Finally, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

  • PDF

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (단권변압기 교류전기철도 급전시스템의 전차선 전압해석)

  • 정현수;이승혁;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.493-499
    • /
    • 2003
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode for locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Filially, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

Solving point burnup equations by Magnus method

  • Cai, Yun;Peng, Xingjie;Li, Qing;Du, Lin;Yang, Lingfang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.949-953
    • /
    • 2019
  • The burnup equation of nuclides is one of the most equations in nuclear reactor physics, which is generally coupled with transport calculations. The burnup equation describes the variation of the nuclides with time. Because of its very stiffness and the need for large time step, this equation is solved by special methods, for example transmutation trajectory analysis (TTA) or the matrix exponential methods where the matrix exponential is approximated by CRAM. However, TTA or CRAM functions well when the flux is constant. In this work, a new method is proposed when the flux changes. It's an improved method compared to TTA or CRAM. Furtherly, this new method is based on TTA or CRAM, and it is more accurate than them. The accuracy and efficiency of this method are investigated. Several cases are used and the results show the accuracy and efficiency of this method are great.

Dof splitting p-adaptive meshless method

  • Kang, Myung-Seok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.535-546
    • /
    • 2001
  • A new p-adaptive analysis scheme for hp-clouds method is presented. In the scheme, refined global equations are resolved into two parts, one of them being related to the newly appended dof's. The solution obtained in previous analysis step is reflected in the force vector. The size of the p-adaptive equation consisting of the newly appended dof's is much smaller than the original equation. Consequently, the computational cost is drastically decreased. Through numerical examples, the efficiency and efficacy of the method in comparison with the existing p-refinement scheme of the hp-clouds have been demonstrated.

Obstacle Avoidance Technique for Chaotic Mobile Robot (카오스 이동 로봇에서의 장애물 회피 기법)

  • Bae Young-chul;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1692-1699
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation, Chua's equation, Hyper-chaos equation, Hamilton equation and Lorenz chaos trajectories with one or more Van der Pol obstacles.

AN APPROXIMATE ANALYTICAL SOLUTION OF A NONLINEAR HYDRO-THERMO COUPLED DIFFUSION EQUATION

  • Lee, Jeong-woo;Cho, Won-cheol
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.187-196
    • /
    • 2001
  • An approximate analytical solution of a nonlinear hydro-thermo coupled diffusion equation is derived using the dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that the product of first order derivatives in the non-dimensionalized governing equation has little influence on the solution of heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation is performed to investigate the applicability of a derived approximate analytical solution. The results show a good agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture movements in unsaturated porous media.

  • PDF