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a b s t r a c t

The burnup equation of nuclides is one of the most equations in nuclear reactor physics, which is
generally coupled with transport calculations. The burnup equation describes the variation of the nu-
clides with time. Because of its very stiffness and the need for large time step, this equation is solved by
special methods, for example transmutation trajectory analysis (TTA) or the matrix exponential methods
where the matrix exponential is approximated by CRAM. However, TTA or CRAM functions well when
the flux is constant. In this work, a new method is proposed when the flux changes. It's an improved
method compared to TTA or CRAM. Furtherly, this new method is based on TTA or CRAM, and it is more
accurate than them. The accuracy and efficiency of this method are investigated. Several cases are used
and the results show the accuracy and efficiency of this method are great.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Burnup calculation plays a very important role in the nuclear
reactor analysis. Burnup equations describe how the material
components of the fuel or absorbers in the nuclear reactor will
change with the time. They are Bateman equations [1], and usually
a set of first order linear ordinary differential equations, which is
very stiff. Burnup calculation often appears in the lattice calculation
and is coupled with the neutron transport calculation. Whatever
the neutron transport equations are calculated by deterministic or
Monte Carlo, burnup calculation must be considered.

Recently, there is a trend in the burnup calculation that the
detailed burnup chain is used instead of pseudo fission product
nuclide(s). There are about 1500 nuclides in the burnup calculation
coupled with Monte Carlo, and many nuclides own a very short
half-life, such as 212Po owns the half life of about 1e-7 s. Therefore,
the burnup equations are large and very stiff, which makes them
difficult to be solved.

There are mainly three kinds of methods to deal with the
burnup equations. These methods are transmutation trajectory
analysis (TTA), Runge-kutta or linear multi step methods, and
matrix exponential methods. Bateman [2] proposed TTA method,
which gives the explicitly analytical expression of every nuclide
when the reaction of the burnup chain is only decay reaction.When
there exists cycles in the burnup chain, TTA method has to cut a

cycle into a relative long chain, which will has a bad effect on the
efficiency and accuracy of TTA. Because burnup equations belong to
ordinary differential equations, any common methods like Runge-
kutta methods and linear multi step methods can also be used.
Runge-Kutta-Gear methods were applied to the burnup calcula-
tions. Matrix exponential methods are very popular in the burnup
calculation, since matrix exponential methods are stable and suit-
able for stiffness problem. The matrix exponential methods express
the solution in the matrix exponential form. There are many
methods about how to compute the matrix exponential. Taylor
series method with scaling and squaring technique was imple-
mented in the ORIGEN code [3]. However, some special care should
be taken for the short-lived nuclides in this method. Other methods
for calculating matrix exponential are the Quadrature-based
rational approximation method (QRAM) (Trefethen et al., 2006),
the Krylov Subspace Method [4], the Chebyshev rational approxi-
mation method (CRAM) [5], the Laguerre polynomial approxima-
tion method (LPAM) [6].

In the matrix exponential methods, the burnup equations are
supposed to be a set of linear ordinary differential equations with
constant coefficient in one time step. Usually, the reaction rates are
taken by the average value in the time step. However, the matrix
exponential methods do not give the analytical solution even if the
reaction rates are linear in one time step. The Matrix exponential
methods give the analytical solution when the reaction rates are
unchanged, and they usually own accuracy of second order.

The Magnus expansion is a kind of exponential methods, which
contains the matrix exponential method introduced above. The* Corresponding author.
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Magnus expansion has been successfully applied in many areas
such as classical Hamilton mechanics, atomic and molecular
physics, nuclear magnetic resonance, etc [7]. From the view of
mathematics, the Magnus expansion is a kind of efficient numerical
integrators.

Magnus expansion is a widespread tool to construct approxi-
mate exponential representations of the solution of the non-
autonomous linear differential equations [8]. Though Magnus
method is a powerful tool, it's not suitable for burnup calculation
because a lot of the commutators in Magnus method destroy the
stability of the exponential solver like CRAM. A special Magnus
variant without commutators or CF (commutators free) method
[12] can improve the accuracy while keeping the stability.

In this present work, the Magnus without the commutator ex-
pansions is presented for solving the point burnup equations. The
numerical results of this method are compared with the referenced
methods.

2. Method description

2.1. The Bateman equations

The general Bateman equation is written as following:

dni
dt

¼
X
isj

�
bi;jli þ si;jf

�
nj �

0
@li þ f

X
j

si;j

1
Ani (1)

Where, ni is the nuclide i density, li is the decay constant of the
nuclide i, si;j is the microscopic cross section of a reaction where
nuclide i generates j, f is the neutron flux, bi;j is the generation
fraction of the nuclide j when the nuclide i decays.

Eq. (1) is a form of the linear equations, which can be simplified
into a compact form in Eq. (2) by the help of the matrix.

d n!
dt

¼ A n! (2)

Where n! is the vector of the nuclides, and A is the matrix
consisting of the coefficient in Eq. (1). If the coefficients in Eq. (1)
are constant, namely A is constant, the solutions can be written
in the form of matrix exponential vector multiplication, seen in Eq.
(3).

n!¼ eAh n!0 (3)

Where h is the time step, and n!0 is the initial value. If f depends on
the time t, the matrix exponential in the literature [9] gives the
solution in the following form:

n!¼ eAh n!0 (4)

Where A is the average value of A(t) in one time step. Notice that
the exact solution of Eq. (2) cannot be written as the simple form of
Eq. (5). And this method owns the accuracy of second order.

n!¼ e

ðh

0

AðtÞdt
n!0 (5)

There are many ways to compute the matrix exponential in Eq.
(4), such as Taylor expansion, matrix decomposition, and rational
approximation, etc. Chebyshev rational approximation method
(CRAM) [5] belongs to the rational approximation. The formulas of
CRAM are computed as following:

eAh ¼ a0I þ Re
Xk
i¼1

ai
Ah� qiI

(6)

Where ai and qi are the parameters of CRAM, k is the CRAM
order, I is the identity matrix, Re represents computing the real part
of the complex number. The larger the CRAM order, the more ac-
curate the calculation precision. Usually, the CRAM order k is cho-
sen 14 in burnup calculations. The disadvantage of Eq. (5) is that
there exists the complex number in this formulas.

Mini-Max polynomial approximation method (MMPA) [10] uses
the similar formulas of Eq. (5), but there is no complex number in
this method.

TTA method [11] is an analytical method to solve the burnup
equation. TTA method has been successfully applied in the field of
burnup chain, especially when there is only the decay process.

2.2. The Magnus expansion

Here, we consider the more general model than Eq. (1), where
the flux can be changed now:

dni
dt

¼
X
isj

�
bi;jli þ si;jfðtÞ

�
nj �

0
@li þ fðtÞ

X
j

si;j

1
Ani (7)

Or Eq. (6) is written as the following form:

d n!
dt

¼ AðtÞ n! (8)

According to the literature [8], if the solution above is repre-
sented in the form of matrix exponential

YðtÞ ¼ eUðtÞY0 (9)

then Usatisfies the differential equation by the means of the Lie
algebra:

d
dt

UðtÞ ¼ dexp�1
U ðAðtÞÞ;Uð0Þ ¼ 0: (10)

Here

dexp�1
U ðCÞ ¼

Xf
k¼0

Bk
k!

adkUC; (11)

Where Bk is the kth Bernoulli number and the definition of adm can
be recursively written:

ad0UC ¼ C; admþ1
U C ¼ �

U; admUC
�

(12)

where [X,Y]¼ XY-YX is the commutator of X and Y. Eq. (11) is solved
by Picard's iteration and Uis approximated

U½mþ1�ðtÞ ¼
ðt

t0

Xf
k¼0

Bk
k!

adk
U½m�ðsÞA

�
s; eU

½m�ðsÞY0
�
ds;U½0�ðtÞ ¼ 0 (13)

However, the summation needs to be truncated, and the prac-
tical implement is the formulas:
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U½1�ðtÞ ¼
ðt

t0

AðsÞds

U½m�ðtÞ ¼
Xm�2

k¼0

Bk
k!

ðt

t0

adk
U

½m�1�ðsÞAðsÞds; m � 2

(14)

According to the literature [8], the formulas above can achieve
the order up to m

U½m�ðtÞ � UðtÞ ¼ O
�
tmþ1

�
(15)

The integrals are computed by quadrature rules with equispaced
points along the interval. Eq. (14) with m up to 3 is reduced to the
following form:

U½2�ðtÞ ¼ U½1�ðtÞ ¼
ðt

t0

AðsÞds

U½3�ðtÞ ¼
ðt

t0

AðsÞdsþ 1
2

ðt

t0

ðs

t0

dsdt½AðsÞ;AðtÞ�

(16)

In this situation, U½3�ðtÞ can indeed achieve the order 4. From Eq.
(15), the Magnus expansion of order 2 is indeed the formulas of Eq.
(4). So Eq. (4) or the method now usually used is the special 2-order
Magnus method. When the commutator of A(s) and A(t) of the any
different moments is zero, then Eq. (4) gives the exact solutions.

U½k�ðtÞ needs much more calculation when k becomes larger, so
only no more than U½3�ðtÞ is considered. In fact, U½4�ðtÞ can be
written as follows:

U½4�ðtÞ ¼ U½3�ðtÞ þ 1
6

ðt

t0

dt1

ðt1
t0

dt2

ðt2
t0

dt3ð½Aðt1Þ; ½Aðt2Þ;Aðt3Þ��

þ ½Aðt3Þ; ½Aðt2Þ;Aðt1Þ��Þ (17)

The integrals of Eq. (15) can be computed by Gaussian
quadrature

U½3� ¼ h
2
ðA1 þ A2Þ þ

ffiffiffi
3

p

12
h2½A2;A1� (18)

c1 ¼ 1
2
þ

ffiffiffi
3

p

6
; c2 ¼ 1

2
�

ffiffiffi
3

p

6
Ai ¼ Aðt0 þ cihÞ; i ¼ 1;2

(19)

There is a commutator in Eq. (17), which may be a disadvantage
for burnup calculation. In burnup calculation, the time step h is
usually quite large, the term associated with h2 may not a small
quantity. In that case, the eigenvalues of U½3� may not distribute
near the negative real axis, and CRAM will fail if CRAM is used to
calculate eU

½3�
.

The Magnus without commutator is investigated in this work. A
product of exponentials of linear combinations of the A(t) are used
which avoids the presence of commutators. It's different from the
standard Magnus method, but it owns the same order with the
standard one. For fourth order Magnus method without commu-
tator, the formulas is the product of twomatrix exponetials, seen in
Eq. (19).

expða1hA1 þ a2hA2Þexpða2hA1 þ a1hA2Þ
¼ exp

�
U½3��þ

�
O
�
h5

��
(20)

with a1 ¼ 3�2
ffiffiffi
3

p
12 , a2 ¼ 3þ2

ffiffiffi
3

p
12 .

In constant flux mode, the flux is unchanged, then Eq. (19) is the
exp(Ah). In non-constant flux case, the calculation of 4th-order
Magnus without commutator is twice of the calculation of 2th-
order Magnus. And this method is called ME3/CF3, while Eq. (4) is
called ME2.

2.3. The stability of Magnus without commutator

From Eq. (1), the matrix A(t) can be written as two parts:

AðtÞ ¼ Dþ fðtÞN (21)

Where D is the matrix associated with decay processes, and it is
unchanged with time; N is the matrix associated with neutron
reactions, and it's also unchanged. For any flux, all of the eigen-
values of the matrix A(t) are near the negative real axis, where
CRAM can be used. Because the first exponent of Eq. (19) can also be
written in the similar way of Eq. (20), seen in Eq. (21), the eigen-
values of the exponent are also near the negative real axis. The
second exponent of Eq. (19) is the similar situation. That is to say,
CRAM can be used to approximate Eq. (19).

a1hA1 þ a2hA2 ¼ ða1hþ a2hÞ
	
Dþ a1f1 þ a2f2

a1 þ a2
N



(22)

3. Calculations and results

Consider that the matrix A in Eq. (2) owns so many zeros, the
matrix A is stored in the sparse matrix format.

3.1. The decay problem of 237Np

The decay library of ORIGEN-2 is used in this case. The aim is to
get the main products of 237Np when 237Np decays about 1million
years. At the initial moment, the quantity of 237Np is 1 mol.

The results obtained by ME3 are shown in Table 1. The refer-
ences are the results obtained by ME2. From Table 1, it shows that
the results obtained byME3 andME2 are the same. In fact, ME3 and
ME2 are the same in the theory when flux is constant, and the
numerical results verify this point.

Table 1
The results of the237Np decay problem.

Nuclides Half-lives ME3
/mole

ME2/mol

Np237 2.14E6 a 7.23911364E-01 7.23911364E-01
Pa233 27.0 d 2.49410552E-08 2.49410552E-08
U233 1.592E5 a 5.70317235E-02 5.70317235E-02
Th229 7340 a 2.63600152E-03 2.63600152E-03
Ra225 14.9 d 1.46483142E-08 1.46483142E-08
Ac225 10.0 d 9.83395345E-09 9.83395345E-09
Fr221 4.8 min 3.34632217E-12 3.34632217E-12
At217 3.2E-3 s 3.67627640E-16 3.67627640E-16
Bi213 46.5 min 3.11257111E-11 3.11257111E-11
Po213 3.72E-6 s 4.67985371E-20 4.67985371E-20
Tl209 2.2 min 3.13971653E-14 3.13971653E-14
Pb209 3.25 h 1.33276457E-10 1.33276457E-10
Bi209 1.9E19 a 2.16399220E-01 2.16399220E-01

Y. Cai et al. / Nuclear Engineering and Technology 51 (2019) 949e953 951



3.2. The UO2 problem

Consider that UO2 is exposed in the environment for one year
where the neutron flux is 3.0E14, then let them decay for three
years. The initial component of UO2 is that: U235 0.03 mol, U238
0.97 mol, O16 2 mol.

The results obtained by ME3 and ME2 are shown in Table 2.
From Table 2, it shows again that ME3 and ME2 are the same when
flux is constant.

3.3. The linear flux problem

Consider that UO2 is exposed in the environment for one year,
however the neutron flux decreases from 3.0E14 to 3.0E13, that is

fðtÞ ¼ 3e14� ð1� 0:9t=TÞ;T ¼ 1 year. The reference is obtained by
ME2 with 40 time step. Table 3 gives the results obtained by ME3
with 8 time steps andME2with 16 time steps. The cost time of ME2
and ME3 are about the same, but the relative errors of Am241
obtained by ME2 are much larger than that of ME3.

Table 4 gives the maximum relative error of results obtained by
ME2 and ME3 under the different time steps. The relative error
obtained by ME3 drops more quickly than ME2, and the results
obtained by ME3 with 4 time steps are even more accurate than
those obtained by ME2 with 16 time steps.

4. Conclusion

The standard Magnus expansions gives the exact exponential
form of the solution, although the exponent is expressed as an
infinite series. TheMagnus expansion of order 2 (ME2) is equivalent
with the matrix exponential method now used widespread. How-
ever, the higher order Magnus methods are not suitable for the
burnup calculation because the commutators in standard Magnus
expansions will destroy the stability of the exponential methods.
Notice that the eigenvalues distribution of the burnup matrix is
along the negative axis, while the eigenvalues of the commutators
may appear in the positive half plane. Here, the special Magnus
method without commutators is analyzed in this work, which is
denotes as ME3 in this work. This method keeps the characteristic
of eigenvalues distribution of the matrix appearing in ME3, which
CRAM or other methods can be used to approximate the matrix
exponential. Compared with the 2th-order Magnus, the cost time
increases twice for ME3. ME3 is tested by several numerical cases.

Table 2
The important nuclides of the UO2 problem.

Nuclides ME3 /mole ME2/mole

Se79 5.19524710E-06 5.19524710e-06
Kr83 5.36479101E-05 5.36479101e-05
Sr90 5.34309655E-04 5.34309655e-04
Zr94 7.10937646E-04 7.10937646e-04
Mo95 7.20574486E-04 7.20574486e-04
Tc99 7.10230322E-04 7.10230322e-04
Ru101 6.45169750E-04 6.45169750e-04
Ag109 3.90544780E-05 3.90544780e-05
Sn126 1.00741521E-05 1.00741521e-05
I129 8.78890248E-05 8.78890248e-05
Xe136 1.35436484E-03 1.35436484e-03
Cs133 7.72658576E-04 7.72658576e-04
Ba138 7.88870889E-04 7.88870889e-04
La139 7.43163639E-04 7.43163639e-04
Ce142 6.70799499E-04 6.70799499e-04
Eu153 4.08641882E-05 4.08641882e-05
U234 8.24830641E-07 8.24830641e-07
U235 1.92874770E-02 1.92874770e-02
U236 1.96025582E-03 1.96025582e-03
U238 9.61257565E-01 9.61257565e-01
Np237 1.15241567E-04 1.15241567e-04
Pu239 4.11853275E-03 4.11853275e-03
Am241 6.61403064E-05 6.61403064e-05
Cm244 2.13149043E-07 2.13149043e-07

Table 3
The important nuclides of the linear flux problem.

Nuclides ME3 Relative error of ME3 ME2 Relative error of ME2 Reference

Se79 2.86835258E-06 �2.58E-06 2.86836097E-06 3.42E-07 2.86835999E-06
Kr83 3.16836657E-05 �1.14E-05 3.16833215E-05 �2.23E-05 3.16840270E-05
Sr90 3.31760412E-04 �3.01E-06 3.31765042E-04 1.09E-05 3.31761410E-04
Zr94 3.99832729E-04 �2.25E-06 3.99833396E-04 �5.78E-07 3.99833627E-04
Mo95 3.07918949E-04 1.11E-04 3.07710087E-04 �5.67E-04 3.07884643E-04
Tc99 3.94043103E-04 �1.18E-04 3.93962264E-04 �3.24E-04 3.94089765E-04
Ru101 3.51357600E-04 �3.53E-06 3.51358523E-04 �8.99E-07 3.51358839E-04
Ag109 1.49987755E-05 �6.95E-05 1.49980221E-05 �1.20E-04 1.49998179E-05
Sn126 4.88873990E-06 �5.59E-06 4.88878598E-06 3.84E-06 4.88876722E-06
I129 4.48667744E-05 �1.87E-05 4.48662722E-05 �2.98E-05 4.48676113E-05
Xe136 6.85465066E-04 1.24E-04 6.85316263E-04 �9.27E-05 6.85379823E-04
Cs133 4.29618624E-04 �7.20E-05 4.29450426E-04 �4.63E-04 4.29649539E-04
Ba138 4.35001474E-04 �3.73E-06 4.35001991E-04 �2.54E-06 4.35003096E-04
La139 4.11340161E-04 �5.42E-06 4.11339705E-04 �6.53E-06 4.11342391E-04
Ce142 3.71783138E-04 �5.47E-06 3.71782160E-04 �8.10E-06 3.71785170E-04
Eu153 1.74077600E-05 �1.59E-04 1.74042373E-05 �3.61E-04 1.74105252E-05
U234 3.30389917E-07 7.32E-06 3.30373677E-07 �4.18E-05 3.30387499E-07
U235 2.35288942E-02 0.00Eþ00 2.35288941E-02 �4.25E-09 2.35288942E-02
U236 1.20781585E-03 0.00Eþ00 1.20781583E-03 �1.66E-08 1.20781585E-03
U238 9.65181560E-01 1.04E-09 9.65181559E-01 0.00Eþ00 9.65181559E-01
Np237 4.84230546E-05 �4.95E-05 4.83944157E-05 �6.41E-04 4.84254520E-05
Pu239 2.95661811E-03 �1.41E-04 2.95590199E-03 �3.83E-04 2.95703427E-03
Am241 2.42758546E-06 2.82E-04 2.42307417E-06 �1.58E-03 2.42690109E-06
Cm244 9.06089197E-09 �1.01E-04 9.06251803E-09 7.82E-05 9.06180941E-09

Table 4
The maxmium relative error.

STEP Relative error of ME2 Relative error of ME3

2 1.13e-01 3.77e-03
4 2.92e-02 1.01e-03
8 7.17e-03 2.82e-04
16 1.58e-03 2.98e-04
32 1.69e-04 e
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The numerical results show that ME3 are in great agreement with
CRAM when the flux is constant. The results also show that ME3 is
more accurate than CRAM when the flux changes with time. This
paper shows the applicability of the Magnus expansions for solving
the linear point burnup mode.

References

[1] H.A. Ashi, L.J. Cummings, P.C. Matthews, Comparison of methods for evalu-
ating functions of a matrix exponential, Appl. Numer. Math. 59 (2009)
468e486.

[2] H. Bateman, The solution of a system of differential equations occurring in the
theory of radioactive transformations, Proc. Camb. Phil. Soc. 15 (1910)
423e427.

[3] A.G. Croff, A User's Manual for the ORIGEN2 Computer Code, Oak Ridge Na-
tional Laboratory, 1980. ORNL/TM-7175.

[4] A. Yamamoto, M. Tatsumi, N. Sugimura, et al., Numerical solution of stiff
burnup equation with short half lived nuclides by the Krylov subspace

method, J. Nucl. Sci. Technol. 44 (2) (2007) 147e154.
[5] M. Pusa, Rational approximations to the matrix exponential in burnup cal-

culations, Nucl. Sci. Eng. 169 (2) (2011) 155e167.
[6] D. She, K. Wang, G.L. Yu, Development of the point-depletion code DEPTH,

Nucl. Eng. Des. 258 (2013a) 235e240.
[7] S. Blanes, et al., The Magnus expansion and some of its applications, Phys. Rep.

470 (2009) 151e238.
[8] F. Casas, A. Iserles, Explicit Magnus expansions for nonlinear equations, J. Phys.

Math. Gen. 39 (2006) 5445e5461.
[9] D. She, A. Zhu, K. Wang, Using generalized Laguerre polynomials to compute

the matrix exponential in burnup equations, Nucl. Sci. Eng. 175 (3) (2013b)
259e265.

[10] Y. Kawamoto, G. Chiba, M. Tsuji, et al., Numerical solution of matrix expo-
nential in burn-up equation using mini-max polynomial approximation, Ann.
Nucl. Energy 80 (2015) 219e224.

[11] A.E. Isotalo, P.A. Aarnio, Comparison of depletion algorithms for large systems
of nuclides, Ann. Nucl. Energy 38 (2) (2011) 261e268.

[12] S. Blanes, P.C. Moan, Fourth- and sixth-order commutator-free Magnus in-
tegrators for linear and non-linear dynamical systems, Appl. Numer. Math. 56
(2006) 1519e1537.

Y. Cai et al. / Nuclear Engineering and Technology 51 (2019) 949e953 953

http://refhub.elsevier.com/S1738-5733(18)30878-7/sref1
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref1
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref1
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref1
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref2
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref2
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref2
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref2
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref3
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref3
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref4
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref4
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref4
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref4
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref5
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref5
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref5
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref6
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref6
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref6
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref7
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref7
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref7
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref8
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref8
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref8
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref9
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref9
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref9
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref9
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref10
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref10
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref10
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref10
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref11
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref11
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref11
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref12
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref12
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref12
http://refhub.elsevier.com/S1738-5733(18)30878-7/sref12



