• Title/Summary/Keyword: On-Line Electric Vehicle

Search Result 93, Processing Time 0.034 seconds

A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit (동력분산형 고속열차의 승차감 개선에 관한 연구)

  • Jeon, Chang-Sung;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.561-567
    • /
    • 2018
  • This study was carried out to improve the ride quality of high-speed electric multiple unit. Through dynamic analysis of the HEMU-430X, the range of the equivalent conicity with a critical speed of 300 km/h was between 0.05 and 0.25. The initial adopted wheel profile of HEMU-430X was S1002. The equivalent conicity of S1002 with the mileage of more than 40,000 km was about 0.033 and it was confirmed that XP55 is more suitable for stable operation because XP55 has the equivalent conicity of over 0.061. In order to improve ride quality of high-speed electric multiple unit, the change of installation angle of the yaw damper was suggested from $7.35^{\circ}$ to $0^{\circ}$. From sensitivity analysis and optimization, the air spring lateral and vertical stiffness was suggested to be reduced by 30% and the secondary vertical and lateral damper damping coefficient was increased by 50%. By applying this, it was expected that the car body acceleration could be improved by about 20% on average. The HEMU-430X's yaw damper installation angle was changed to $0^{\circ}$ and the damping coefficient of the lateral damper was increased by 30%. When the test run was carried out at the speed of 300 km/h on the Kyungbu high-speed line, the vehicle lateral acceleration had improved by 34.3%. The effect of additional improvement measures proposed in this paper will be tested in the on track test. The riding quality improvement process used in this study can be used to solve ride quality problems that can occur in commercial operation of high-speed electric multiple unit in the future.

Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries (이차전지 양극활물질 제조용 소성로의 열화학적 해석)

  • Hwang, Min-Young;Kim, Yong-Gyun;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Yong-Tae;Chang, Youn-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Lithium secondary batteries have been widely used in the portable electric devices as power source. Recently it is expected that the realm of its applications expands to the markets such as energy storage medium of hybrid electric vehicle(HEV), electric vehicle(EV). Cathode active material is crucial in terms of performance, durability, capacity of lithium secondary batteries. It is urgent to develope the technology for mass production of cathode material to cope with the markets' demands in the near future. In this study, a calcination furnace running in real production line is modelled in 3D, and the thermal flow and gas flow after chemical reaction in the furnace is analyzed through numerical computations. Based on the results, it is shown that large volume of $CO_2$ gas is generated from chemical reaction. High concentration of $CO_2$ gas and it's stagnation is clearly found from the reactant containers in which the reaction occur to the bottom area of the furnace. It is also studied that 15% or more $CO_2$ mol fraction could affect to proper formation of $LiCoO_2$ through TGA-DSC analysis. The solutions to evacuate carbon dioxide from the furnace are suggested through the change of furnace design and operating condition as well.

Cause analysis of the electric train derailment occurred in turnout on a sharp curves. (급곡선 분기기에서 발생한 전동열차 탈선사고의 원인분석)

  • Lee, Seungwon;Woo, Kwanje;Jeong, Chanmook
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.411-416
    • /
    • 2018
  • It is generally not preferable to install a turnout on a sharp curves but it is not desirable for the safety of a train. However, in a mountainous area or a depot where a sufficient space can not be secured to secure a straight line. In this study, in order to analyze the cause of train derailment accident that occurred in the place where turnout is installed in a sharp curves, we performed derailment analysis using line data and accident vehicle data measured at the location where the accident occurred. This derailment coefficient maximum turnout at the start of the track and derailment curve analysis showed that even big enough to cause a derailment as 1.37 in size, which was found to be consistent with the actual site survey results derailment occurred.

Measurement and Analysis of Transient Voltage for an Inverter-fed Induction Motor (인버터 구동 유도전동기에서 과도전압의 측정과 분석)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Park, Dae-Won;Cho, Young-Jin;Cheon, Sang-Gyu;Choi, Su-Yeon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.650-654
    • /
    • 2007
  • Induction motors are widely used as a source of driving force in electric vehicles and pulse width modulation (PWM) inverters are applied to their operation. The issue is that insulation of inverter-fed induction motors (IFMs) are more stressed than in line-powered motors by transient voltages. This paper dealt with experimental results on transient voltage produced by the PWM operation of an induction motor. The peak and the dv/dt of transient voltage depending on the length of power feeding cable and operating frequency were investigated. In the experiment, transient voltages up to 3.3PU of the rated-inverter voltage were recorded for the cable length of 50m. As the cable length is increased, the peak voltage appeared at the motor terminals increases. This phenomenon can be explained by the reflection and the transmission of travelling wave. Consequently, special care for the cable length between the motor and the inverter should be taken in the use of IFM to ensure the full life of insulation system.

A Study on Feedforward Compensation Method of IPMSM for EV with Non-sinusoidal BEMF (비 정현파 역기전압을 가지는 EV용 IPMSM의 전향보상 제어기법에 관한 연구)

  • Park, Gui-Yeo;Park, Jung-Woo;Ahn, Won-Il;Shin, Duck-Woong;Jeong, Moon-Seon;Moon, Chae-Joo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.573-578
    • /
    • 2013
  • In the case of the Back EMF voltage contains the harmonics, the motor torque ripple and vibration is occurred by the current pulsation, because IPMSM control algorithm is the model which is assumed that it contains a sinusoidal Back EMF voltage. To improve ride quality, in the case of IPMSM for EV, improving the torque control characteristics is necessary. Therefore, there is a need to minimize the influence of the harmonics. In this paper, the investigation to decrease the current distortion factor has been performed for improving torque control characteristics by applying the non-sinusoidal Back EMF to IPMSM model.

On the Occurrence of Defects by Vehicle Type According to the Fire-fighting Vehicle Detailed Inspection (소방차량 정밀점검 분석에 따른 차종별 결함 발생에 관한 연구)

  • Lee, Jang Won;Han, Yong-Taek
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • Purpose: This study is based on the detailed inspection data for the last 6 years of fire-fighting high ladder vehicles, fire-fighting inflected ladder vehicles, fire-fighting chemical vehicles and fire-fighting pump vehicles used in front-line fire departments. The purpose is to contribute to the technological development of fire-fighting vehicles by grasping the implementation status of each city and province, the rate of defects, and the occurrence of defects by year. Method: The implementation status by city and province, defect incidence rate, and defect occurrences by year were analyzed. Result: From 2012 to 2017, when the average of 230 or more overhaul vehicles was requested, the results of each city/province show slight fluctuations, but the number of defects gradually decreased due to the old fire-fighting vehicle replacement project and the response of fire vehicle manufacturers. Conclusion: In the case of fire-fighting ladders, the incidence rate of defects was found to be in the order of elevator device, electric device, ladder device, and pneumatic supply device. And in the case of the fire fighting ladder, it was confirmed that the incidence of defects appeared in the order of the refractive ladder, hydraulic cylinder, hydraulic oil, and pneumatic supply device. In the case of fire-fighting chemical vehicles, it was confirmed that defects occurred in the powder fire extinguishing device, fire pump, vacuum pump, and pneumatic supply device.

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

A Study of design ATM communication RF IC electric reserve protocol and monitoring system using PSTN / leased line (PSTN/전용선을 이용한 ATM통신방식의 RF IC전자 지불프로토콜과 모니터링시스템 설계연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.3
    • /
    • pp.369-382
    • /
    • 2002
  • The increase of vehicles stagnations leads to the increasing attention to the way customers pay and a large number of Projects on electronic cash system. Tranport system is comprised of a number of advanced technologies, including information processing, communications, control, and electronics. Recently many research on a system which provides contact in order to protect driver's vehicle passage have been carried out. And some potential problems from that system are being reviewed by electronic cash system. In this papers, we suggest RF protocol developing technology using the concept of electronic cash. ATM electronic cash developing is consist of component of pre-developed coin throw, integration of component using its, and production of more requirement-satisfactory ITS solution. Result increase 15-40% pre-type vehicles stagnations. Especially, we expect this proposed concept would be well adapted to our national environments.

  • PDF

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.

Design and Performance Evaluation of Two-Layered Microwave Absorbers(Dielectric/Magnetic) for Wide Oblique Incidence Angles Used for ITS (ITS용 2층형 전파 흡수체(유전체/자성체) 설계 및 경사 입사 흡수 특성 해석)

  • Kim, Jae-Woong;Kim, Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1217-1223
    • /
    • 2007
  • Advanced microwave absorbers for wide oblique incidence angles are required in many applications including wireless communication or vehicle identification in ITS(Intelligent Transport System) where 5.8 GHz DSRC(Dedicated Short Range Communication) system is applied. In this study, two-layered microwave absorber(with a laminate structure of dielectric/magnetic composites) has been designed for the achievement of low reflection coefficient over wide incidence angles at 5.8 GHz. Iron flake particles are used as the filler in the absorbing layer, and the magnetic composite sheet exhibits high magnetic loss due to ferromagnetic resonance in gigahertz frequencies. The surface layer of low dielectric constant containing small amount of carbon black is used as the impedance transformer. On the basis of transmission line theory, the reflection loss has been calculated for the two-layer structure with variation of incident angles for both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations. At the optimum thickness of the composite layers, a low value of reflection loss(less than -10 dB) has been predicted for wide incidence angles up to $55^{\circ}$ which is in good agreement with the measured value determined by free-space measurement.