• Title/Summary/Keyword: On the Machine Measurement

Search Result 1,042, Processing Time 0.041 seconds

Development of Suspended Sediment Concentration Measurement Technique Based on Hyperspectral Imagery with Optical Variability (분광 다양성을 고려한 초분광 영상 기반 부유사 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.116-116
    • /
    • 2021
  • 자연 하천에서의 부유사 농도 계측은 주로 재래식 채집방식을 활용한 직접계측 방식에 의존하여 비용과 시간이 많이 소요되며 점 계측 방식으로 고해상도의 시공간 자료를 측정하기엔 한계가 존재한다. 이러한 한계점을 극복하기 위해 최근 위성영상과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사 농도 시공간분포를 측정하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 비균질적으로 분포하여 원격탐사를 통해 정확하고 전역적인 농도 분포를 재현하기는 어려운 실정이다. 이러한 부유사의 비균질성은 부유사의 입도분포, 광물특성, 침강성 등이 하천에서 다양하게 분포하기 때문이며 이로 인해 부유사는 지역별로 다양한 분광특성을 가지게 된다. 따라서, 본 연구에서는 이러한 영향을 고려한 전역적인 부유사 농도 예측 모형을 개발하기 위해 실내 실험을 통해 부유사 특성별 고유 분광 라이브러리를 구축하고 실규모 수로에서 다양한 부유사 조건에 대한 초분광 스펙트럼과 부유사 농도를 측정하는 실험을 수행하였다. 실제 부유사 농도는 광학 기반 센서인 LISST-200X와 샘플링을 통한 실험실 분석을 통해 계측되었으며, 초분광 스펙트럼 자료는 초분광 카메라를 통해 촬영한 영상에서 부유사 계측 지점에 대한 픽셀의 스펙트럼을 추출하여 구축하였다. 이렇게 생성된 자료들의 분광 다양성을 주성분 분석(Principle Component Analysis; PCA)를 통해 분석하였으며, 부유사의 입도 분포, 부유사 종류, 수온 등과의 상관관계를 통해 분광 특성과 가장 상관관계가 높은 물리적 인자를 규명하였다. 더불어 구축된 자료를 바탕으로 기계학습 기반 주요 특징 선택 알고리즘인 재귀적 특징 제거법 (Recursive Feature Elimination)과 기계학습기반 회귀 모형인 Support Vector Regression을 결합하여 초분광 영상 기반 부유사 농도 예측 모형을 개발하였으며, 이 결과를 원격탐사 계측 연구에서 일반적으로 사용되어 오던 최적 밴드비 분석 (Optimal Band Ratio Analysis; OBRA) 방법으로 도출된 회귀식과 비교하였다. 그 결과, 기존의 OBRA 기반 방법은 비선형성을 증가시켜도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 부유사의 다양한 분광 특성을 반영하지 못하였으며, 본 연구에서 제시한 기계학습 기반 예측 모형은 420 nm~1000 nm에 걸쳐 폭 넓은 파장대를 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 개발된 모형을 적용해 다양한 유사 조건에 대한 부유사 시공간 분포를 매핑한 결과, 시공간적으로 고해상도의 부유사 농도 분포를 산출하는 것으로 밝혀졌다.

  • PDF

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Synthesis of Ultrasound Contrast Agent: Characteristics and Size Distribution Analysis (초음파 조영제의 합성 및 합성된 초음파 조영제의 특성 분석)

  • Lee, Hak Jong;Yoon, Tae Jong;Yoon, Young Il
    • Ultrasonography
    • /
    • v.32 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Purpose: The purpose of this study is to establish the methodology regarding synthesis of ultrasound contrast agent imaging, and to evaluate the characteristics of the synthesized ultrasound contrast agents, including size or degradation interval and image quality. Materials and Methods: The ultrasound contrast agent, composed of liposome and SF6, was synthesized from the mixture solution of $21{\mu}mol$ DPPC (1, 2-Dihexadecanoyl-sn-glycero-3-phosphocholine, $C_{40}H_{80}NO_8P$), $9{\mu}mol$ cholesterol, $1.9{\mu}mol$ of DCP (Dihexadecylphosphate, $[CH_3(CH_2)_{15}O]_2P(O)OH$), and chloroform. After evaporation in a warm water bath and drying during a period of 12-24 hours, the contrast agent was synthesized by the sonication process by addition of buffer and SF6 gas. The size of the contrast agent was controlled by use of either extruder or sonication methods. After synthesis of contrast agents, analysis of the size distribution of the bubbles was performed using dynamic light scattering measurement methods. The degradation curve was also evaluated by changes in the number of contrast agents via light microscopy immediate, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, and 84 hours after synthesis. For evaluation of the role as an US contrast agent, the echogenicity of the synthesized microbubble was compared with commercially available microbubbles (SonoVue, Bracco, Milan, Italy) using a clinical ultrasound machine and phantom. Results: The contrast agents were synthesized successfully using an evaporation-drying-sonication method. The majority of bubbles showed a mean size of 154.2 nanometers, and they showed marked degradation 24 hours after synthesis. ANOVA test revealed a significant difference among SonoVue, synthesized contrast agent, and saline (p < 0.001). Although no significant difference was observed between SonoVue and the synthesized contrast agent, difference in echogenicity was observed between synthesized contrast agent and saline (p < 0.01). Conclusion: We could synthesize ultrasound contrast agents using an evaporation-drying-sonication method. On the basis of these results, many prospective types of research, such as anticancer drug delivery, gene delivery, including siRNA or microRNA, targeted molecular imaging, and targeted therapy can be performed.

8MHz RF Capacitive Heating on Rabbit Lung (가토의 정상폐의 고주파 유전형 가온에 관한 연구)

  • Jang, Hong, Seok;Kim, Jong-Woo
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • The usefulness of hyperthermia for cancer therapy has been established. The purpose of the present investigation was to access feasibility of heating normal lung and the temperature and power requirement were compared with that for liver as solid organ in rabbits by using radiofrequent heating machine. In this study, 20 rabbits were divided into 2 groups according to the heating site and the method of temperature measurement; in group I : lung heating and temperature measuring in skin, esophagus and lung parenchyme; in group II : liver heating and temperature measuring in skin and liver parenchyme. The results were as follows; 1) When the maximum temperature was almost same in lung heating group and liver heating group, the power for liver heating was lesser required than the power for lung heating (p<0.05). 2) The temperature of esophagus for the measurement of mediastinum temperature was $1.1{\pm}0.9^{\circ}C$ higher than the temperature of lung parenchyme (p<0.05). Therefore the above findings suggest lung, air containing organ, is well heated as same as liver, solid organ. So more active trials of lung heating in the lung cancer must be likely considered. But when the lung is heated, the esophageal temperature is higher than lung parenchyme, so the mediastinum damage must be considered seriously.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

The Effect of Temporary Cement Cleaning Methods on the Retentive Strength of Cementation Type Implant Prostheses (임시 시멘트 제거방법이 시멘트 유지형 임플란트 보철물의 유지력에 미치는 영향)

  • Shin, Hwang-Kyu;Song, Young-Gyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.125-140
    • /
    • 2011
  • The remnant of temporary cement on the intaglio surface of cast restoration may have a negative effect on the retentive strength of permanent cement. This study was to evaluate the effect of temporary cement cleaning methods on the retentive strength of cementation type implant prostheses. Prefabricated implant abutments - height 5.5mm, diameter 4.5mm, 6 degree axial wall taper with chamfer margins were used. Forty copings-abutment specimens were divided into four groups(each n=10) according to the cleaning methods for temporary cement(Temp-$Bond^{(R)}$) as follows : no temporary cementation(the control group), orange solvent, ultrasonic cleaning, air borne-particle abrasion. After the application of temporary cement and the separation, the cleaning procedure was performed according to the protocol of each group. The specimens were cemented with $Premier^{(R)}$ Implant $Cement^{TM}$. After the permanent cementation, the specimens were subjected to thermocycling and pulled out from the specimens with a universal testing machine at a cross-head speed of 0.5mm/min. After the retentive strength test, all the specimens were cleaned using ultrasonic cleaning, abraded with air borne-particles, and steam-cleaned. Likewise, the specimens were temporarily cemented(Temp-$Bond^{(R)}$ NE), cleaned according to the protocol of each group, cemented with $Premier^{(R)}$ Implant $Cement^{TM}$ and subjected to thermocycling and measurement of their retentive strength. The mean of group with orange solvent were significantly lower than those of other groups(p<0.05). There was no significance between group with ultrasonic cleaning and group with air borne-particle abrasion. Group with ultrasonic cleaning and group with air-particle abrasion were no significance at control group. There was no significance between group cemented with Temp-$Bond^{(R)}$ and group cemented with Temp-$Bond^{(R)}$ NE. Within the limitation of this study, it can be concluded that the temporary cement cleaning method with only orange solvent may have a negative effect on the retentive strength of permanent cement. Ultrasonic cleaning and air borne-particle abrasion methods are recommended for the temporary cement cleaning method on cementation type implant prostheses.

EFFECT OF INTERMITTENT POLYMERIZATION ON THE RATE OF POLYMERIZATION SHRINKAGE AND CUSPAL DEFLECTION IN COMPOSITE RESIN (복합 레진의 간헐적 광중합 방법이 중합 수축 속도와 치아의 교두 변위에 미치는 영향)

  • Kim, Min-Kyung;Park, Sung-Ho;Seo, Deog-Gyu;Song, Yun-Jung;Lee, Yoon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.341-351
    • /
    • 2008
  • This study investigated the effect of intermittent polymerization on the rate of polymerization shrinkage and cuspal deflection in composite resins. The linear polymerization shrinkage of each composite was measured using the custom-made linometer along with the light shutter specially devised to block the light at the previously determined interval. Samples were divided into 4 groups by light curing method; Group 1) continuous light (60s with light on); Group 2) intermittent light (cycles of 3s with 2s light on & 1s with light off for 90s): Group 3) intermittent light (cycles of 2s with 1s light on & 1s with light off for 120s); Group 4) intermittent light (cycles of 3s with 1s light on & 2s with light off for 180s). The amount of linear polymerization shrinkage was measured and its maximum rate (Rmax) and peak time (PT) in the first 15 seconds were calculated. For the measurement of cuspal deflection of teeth, MOD cavities were prepared in 10 extracted maxillary premolars. Reduction in the intercuspal distance was measured by the custom-made cuspal deflection measuring machine. ANOVA analysis was used for the comparison of the light curing groups and t-test was used to determine significant difference between the composite resins. Pyramid showed the greater amount of polymerization shrinkage than Heliomolar (p < 0.05). There was no significant difference in the linear polymerization shrinkage among the groups. The Rmax was group 4 < 3, 2 < 1 in Heliomolar and group 3 < 4 < 2, 1 in Pyramid (p < 0.05). Pyramid demonstrated greater cuspal deflection than Heliomolar. The cuspal deflection in Heliomolar was group 4 < 3 < 2, 1 and group 4, 3 < 2, 1 in Pyramid (p < 0.05). It was concluded that the reduced rate of polymerization shrinkage by intermittent polymerization can help to decrease the cuspal deflection.

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF

A Survey on the Status of Noisy Working Environment in Manufacturing Industries (제조업 산업장의 소음 작업환경 실태에 관한 조사 연구)

  • Kim, Joon-Youn;Kim, Byung-Soo;Lee, Chae-Un;Jun, Jin-Ho;Lee, Jong-Tae;Kim, Jin-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.1 s.19
    • /
    • pp.16-30
    • /
    • 1986
  • In order to prepare the fundamental data for the improvement of noisy working environments and the effective hearing conservation program on workers exposed to industrial noise, the authors surveyed the working processes and evaluated the noise levels on 56 manufacturing industries in Pusan area from April to July in 1985. The results were summarized as follows : 1. The noise level was the highest in shipbuilding and repairing(95.6 dBA), and followed by steel rolling(94.0 dBA), manufacture of motor vehicles(93.1 dBA), manufacture of fishing nets(92.9 dBA), manufacture of testiles(92.5 dBA), iron and steel foundries(89.3 dBA), manufacture of metal products(89.1 dBA), preserving and processing of marine foods(87.0 dBA), manufacture of rubber products(85.3 dBA), manufacture of plywood(84.9 dBA) and manufacture of paints(84.5 dBA). 2. Among fifty surveyed working processes, the noise level of twenty-one processes (42%) exceeded the threshold limit value for 8 hours per day. 3. As the allowable exposure times by governmental threshold limit values to industrial noise level(dBA), cocking of shipbuilding and repairing and plating(CGL) of steel rolling were the shortest(30 minutes), and followed by assembling(rivet) of manufacture of motor vehicles(1 hour) weaving of manufacture of textiles and shot, machine, pipe laying of shipbuilding and repairing(2 hours). 4. By the result of octave band analysis on noisy working processes in excess of 90 dBA, the sound level was the highest at 2,000 Hz or 4,000 Hz. 5. It was recognized that the measurement of overall sound pressure level was also effective as octave band analysis in evaluating the industrial noise.

  • PDF

A Study on the Variation of Transmission Factors, Output Factors and Percent Depth Doses by Wedge Filters for 4~10 MV X-Ray Beams (4~10 MV X-선의 쐐기 (wedge) 필터의 투과율과 출력계수, 선축상 선량분포의 변화에 관한 연구)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.3-17
    • /
    • 1997
  • Because a wedged beam consists of attenuated primary photons and scattered radiations from wedge, the spectrum of the wedged beam does not coincide with that of an open beam with same geometry. The aims of current report are to get exact information about whether effects of 15-60$^{\circ}$ wedge for 4 -10 MV photon beams should be considered for dose calculation or not, and to suggest a reference condition for measurement of wedge transmission factor. Percent depth dose of both open and wedged fields with angles of 15, 30, 45, 60$^{\circ}$ for beams of 4 MV(Clinac 4/100, Varian), two 6 MV(Clinac 6/100 and Clinac 2100C, Varian), 10 MV(Clinac 2100C, Varian) X-rays were measured to 30cm deep in water using ionization chambers. Hardening factors of photon beams were calculated with measured PDDs. Both field size factors and transmission factors of wedge filters were measured at d$_{max}$ in water. Beam hardening factors of wedged fields of 4 and 6 MV X-ray were larger than 1 for all wedge angles, field sizes and depths deeper than d$_{max}$ Beam hardening factors for wedge angles 15, 30, 45, 60$^{\circ}$ for 10$\times$10cm were respectively 1.010, 1.014, 1.023 and 1.034 for 4MV X-ray, 1.005, 1.008, 1.019, and 1.024 for 6MV X-ray of Clinac 6/100, 1.011, 1.021, 1.032, 1.036 for 6MV X-ray of Clinac 2100C, and 1.008, 1.012, 1.012 and 1.012 for 10MV X-ray. Beam hardening factors of 10MV X-ray were 1 within 1.2% difference for all wedge angles, depths and field sizes. It was made clear that for 6MV X-rays, the beam hardening factor depends on treatment machine. The relationship of the factor and depth was linear. Field size factor at d$_{max}$ was independent of wedge angle except for the field of 15$\times$15cm. and maximum difference of the field size factors for the field size was 1.4% for 4MV X-ray. When the wedge factor is determined, dependence of the factor on field size is negligible at d$_{max}$ but should be considered at deeper depth. Calculating dose distribution or MU, the beam hardening factor should be applied for 4~6MV X-ray beams, but might not be considered for 10MV beam. When wedge transmission factor was determined at d$_{max}$ or in air, field size factors for open field are also applicable to wedged fields, but otherwise, field size factor for each wedge or wedge factor depending on field size should be applied.

  • PDF