DOI QR코드

DOI QR Code

복합 레진의 간헐적 광중합 방법이 중합 수축 속도와 치아의 교두 변위에 미치는 영향

EFFECT OF INTERMITTENT POLYMERIZATION ON THE RATE OF POLYMERIZATION SHRINKAGE AND CUSPAL DEFLECTION IN COMPOSITE RESIN

  • 김민경 (연세대학교 치과대학 치과보존학교실) ;
  • 박성호 (연세대학교 치과대학 치과보존학교실) ;
  • 서덕규 (연세대학교 치과대학 치과보존학교실) ;
  • 송윤정 (연세대학교 치과대학 치과보존학교실) ;
  • 이윤 (연세대학교 치과대학 치과보존학교실) ;
  • 이찬영 (연세대학교 치과대학 치과보존학교실)
  • Kim, Min-Kyung (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Park, Sung-Ho (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Seo, Deog-Gyu (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Song, Yun-Jung (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Yoon (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Chan-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University)
  • 발행 : 2008.07.31

초록

지금까지 다수의 연구자들에 의해 광중합형 복합 레진을 중합하는 방법에 있어서 광조사 강도, 시간을 조절하여 중합수축의 속도를 감소시키기 위한 시도가 있었으나, 간헐적 중합법에 관한 구체적인 연구가 부족하다. 이에 저자는 광중합 복합 레진을 간헐적으로 광중합시켜 기존의 연속 중합법과 비교하여 중합 수축의 속도를 측정하고 교두 변위에 대한 영향을 평가해 보고자 하였다. 실험에 사용된 수복 재료는 2종의 광중합형 복합 레진으로 Heliomolar와 Pyramid이며, 중합 수축량을 측정하기 위해 자체 제작한 Linometer (R&B Inc., Daejon, Korea)을 사용하였고 광중합시 광조사 차단장치를 시편과 Linometer 사이에 위치시켜 각각의 서로 다른 중합 주기: (1) 연속 광중합 (60초간 계속 광조사); (2) 2초 광조사, 1초 광차단 (90초 시행), (3) 1초 광조사, 1초 광차단 (120초 시행), (4) 1초 광조사, 2초 광차단 (180초 시행)로 중합시켰다. 군 별로 조사된 총에너지량이 동일하도록 중합 시간을 조절하였고, 최종 중합 수축량을 측정하였으며 중합 수축의 최고속도 ($R_{max}$)와 최고속도를 나타낸 peak time (PT)을 계산하였다. 교두 변위의 측정을 위해서는 각 군별로 10개의 건전한 상악 소구치에 변형시킨 제2급 와동을 형성한 다음 상아질 접착제를 도포하고 일정량의 복합 레진을 충전한 후 치아를 자체 제작된 치아 변위 측정기 (R&B Inc., Daejon, Korea)에 위치시켜 교두 변위양을 알아보았다. 통계분석은 ANOVA test를 이용하여 군 간의 비교를 하였고, 재료간의 비교를 위해서는 t-test를 시행하였다. 실험 결과는 1) 선수축량은 군 간에 차이가 없었고 (p > 0.05), Pyramid가 Heliomolar보다 중합 수축량이 컸다 (p < 0.05). Peak time은 Heliomolar와 Pyramid 레진 모두에서 간헐적 광중합시 더 늦게 나타났다. $R_{max}$는 Heliomolar는 4군 < 3군, 2군 < 1군 순이었고, Pyramid는 3군 < 4군 < 2군, 1군 순으로 측정되었다. 2) Heliomolar는 4군 < 3군 < 2, 1군 그리고 Pyramid는 4, 3군 < 2, 1군 순으로 교두 변위가 컸으며 (p < 0.05), Pyramid가 Heliomolar보다 교두 변위가 크게 나타났다 (p < 0.05). 이번 실험을 통해 복합 레진을 광조사 차단장치를 이용하여 간헐적 광중합시켜 중합수축 속도를 늦춤으로써 교두 변위 양이 감소됨을 알 수 있었다.

This study investigated the effect of intermittent polymerization on the rate of polymerization shrinkage and cuspal deflection in composite resins. The linear polymerization shrinkage of each composite was measured using the custom-made linometer along with the light shutter specially devised to block the light at the previously determined interval. Samples were divided into 4 groups by light curing method; Group 1) continuous light (60s with light on); Group 2) intermittent light (cycles of 3s with 2s light on & 1s with light off for 90s): Group 3) intermittent light (cycles of 2s with 1s light on & 1s with light off for 120s); Group 4) intermittent light (cycles of 3s with 1s light on & 2s with light off for 180s). The amount of linear polymerization shrinkage was measured and its maximum rate (Rmax) and peak time (PT) in the first 15 seconds were calculated. For the measurement of cuspal deflection of teeth, MOD cavities were prepared in 10 extracted maxillary premolars. Reduction in the intercuspal distance was measured by the custom-made cuspal deflection measuring machine. ANOVA analysis was used for the comparison of the light curing groups and t-test was used to determine significant difference between the composite resins. Pyramid showed the greater amount of polymerization shrinkage than Heliomolar (p < 0.05). There was no significant difference in the linear polymerization shrinkage among the groups. The Rmax was group 4 < 3, 2 < 1 in Heliomolar and group 3 < 4 < 2, 1 in Pyramid (p < 0.05). Pyramid demonstrated greater cuspal deflection than Heliomolar. The cuspal deflection in Heliomolar was group 4 < 3 < 2, 1 and group 4, 3 < 2, 1 in Pyramid (p < 0.05). It was concluded that the reduced rate of polymerization shrinkage by intermittent polymerization can help to decrease the cuspal deflection.

키워드

참고문헌

  1. Alvarez-Gayosso C, Barcelo-Santana F, Guerrero- Ibarra J, Saes-Espinola G, Canseco-Martinez MA. Calculation of contraction rates due to shrinkage in light-cured composites. Dent Mater 20(3):228-235, 2004 https://doi.org/10.1016/S0109-5641(03)00097-6
  2. Baush JR, de Lange K, Davidson CR, Peters A, de Gee AJ. Clinical significance of polymerization shrinkage of composite resins. J Prosthet Dent 48:59-67, 1982 https://doi.org/10.1016/0022-3913(82)90048-8
  3. Jorgensen KD, Asmussen E, Shimokobe H. Enamel damages caused by contracting restorative resins. Scand J Dent Res 83:120-122, 1975
  4. Davidson CL, de Gee AJ. Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res 63:146-148, 1984 https://doi.org/10.1177/00220345840630021001
  5. Bouschlicher MR, Rueggeberg FA. Effect of ramped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent 12:328-339, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00242.x
  6. Eick JD, Welch FH. Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity. Quintessence Int 17:103-111, 1986
  7. Kemp-Scholite CM, Davidson CL. Marginal sealing of curing contraction gaps in Class V composite resin restorations. J Dent Res 67(5):841-845, 1988 https://doi.org/10.1177/00220345880670050901
  8. Lutz F, Krejci I, Barbakow F. Quality and durability of marginal adaptation in bonded composite restoration. Dent Mater 10:197-213, 1991
  9. Kanca J, Suh BI. Pulse activation : Reducing resinbased composite contraction stresses at the enamel cavosurface margins. Am J Dent 12:107-112, 1999
  10. Roberts JC, Powers JM, Craig RG. Fracture toughness of composite and unfilled restorative resins. J Dent Res 56:748-753, 1977 https://doi.org/10.1177/00220345770560070801
  11. akaguchi RL, Peter MC, Nelson SR, Douglas WH, Poort HW. Effects of polymerization contraction in composite restorations. J Dent 20(3):178-182, 1992 https://doi.org/10.1016/0300-5712(92)90133-W
  12. Antonucci JM, Toth EE. Extent of polymerization of dental resins by differential scanning calorimetry. J Dent Res 62:121-125, 1983 https://doi.org/10.1177/00220345830620020701
  13. Venhoven BAM, de Gee AJ, Davidson CL. Light initiation of dental resins : dynamics of the polymerization. Biomaterials 17:2313-2318, 1996 https://doi.org/10.1016/S0142-9612(96)00074-9
  14. 박성호, 이순영, 조용식, 김수선. 광중합형 구치부 수복재료의 중합 수축량과 중합 수축력. 대한치과보존학회지 28:348-353, 2003
  15. de Gee AJ, Feilzer AJ, Davidson CL. The linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater 9:11-14, 1993 https://doi.org/10.1016/0109-5641(93)90097-A
  16. Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence of light intensity on polymerization and integrity of restoration-cavity interface. Eur J Oral Sci 103:322-326, 1995
  17. Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent 23:183-189, 1995 https://doi.org/10.1016/0300-5712(95)93577-O
  18. Uno S, Asmussen E. Marginal adaptation of a restorative resin polymerized at reduced rate. Scand J Dent Res 99:440-444, 1991
  19. Mehl A, Hickel R, Kunzelmann KH. Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization'. J Dent 25:321-330, 1997 https://doi.org/10.1016/S0300-5712(96)00044-9
  20. Goracci G, Mori G, de Martinis LC. Curing light intensity and marginal leakage of resin composite restorations. Quintessence Int 27:355-362, 1996
  21. Dennison JB, Yaman P, Seir R, Hamilton JC. Effect of variable light intensity on composite shrinkage. J Prosthet Dent 84:499-505, 2000 https://doi.org/10.1067/mpr.2000.110494
  22. Rueggeberg FA, Craig RG. Correlation of parameters used to estimate monomer conversion in a light activated resin composite. J Dent Res 67:932-937, 1988 https://doi.org/10.1177/00220345880670060801
  23. 이순영, 박성호. 광중합형 구치부 수복재료의 중합 수축력과 교 두 변위의 상관관계. 대한치과보존학회지 29:346-352, 2004
  24. Suliman AA, Boyer DB, Lakes RS. Cusp movement in premolars resulting from composite polymerization shrinkage. Dent Mater 9:6-10, 1993 https://doi.org/10.1016/0109-5641(93)90096-9
  25. Ericson D, Paulsson L, Sowaik H, Derand T. Reduction of cusp deflection resulting from composite polymerization shrinkage, using a light-transmitting cone. Scand J Dent Res 102:244-248, 1994
  26. Obici AC, Sinhoreti MA, de Goes MF, Consani S, Sobrinho LC. Effect of the photo-activation method on polymerization shrinkage of restorative composites. Oper Dent 27:192-198, 2002
  27. Brackett WW, Haisch LDA, Covey DA. Effect of plasma arc curing on microleakage of Class V resin-based composite restorations. Am J Dent 13:121-122, 2000
  28. Walls AWC, McCabe JF, Murray JJ. The polymerization contraction of visible-light activated composite resins. J Dent 16:177-181, 1988 https://doi.org/10.1016/0300-5712(88)90032-2
  29. Rueggeberg FA, Caughman WF, Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 19:26-32, 1994
  30. Rueggeberg FA. Contemporary issues in photocuring. Compendium 20:S4-15, 1999
  31. Davidson-Kaban SS, Davidson CL, Feilzer AJ, de Gee AJ, Erdilek N. The effect of curing light variations on bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dent Mater 13:344-352, 1997 https://doi.org/10.1016/S0109-5641(97)80105-4
  32. Koran P, Kurschner R. Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion and degree of polymerization. Am J Dent 11:17-22, 1998
  33. Asmussen E, Peutzfeldt A. Flexural strength and modulus of a step-cured resin composite. Acta Odontol Scand 62:87-90, 2004 https://doi.org/10.1080/00016350310008823
  34. Asmussen E, Peutzfelt A. Influence of UEDMA, Bis- GMA and TEGDMA on selected mechanical properties of experimental composite resins. Dent Mater 14:51-56, 1998 https://doi.org/10.1016/S0109-5641(98)00010-4
  35. Lambrechts P, Braem M, Vanherle G. Evaluation of clinical performance for posterior composite resins and dentine adhesives. In: Derrick DD, editor. The Dental Annual. London: Butterworth and Co. Ltd, 147-187, 1988
  36. Suh BI, Feng L, Wang Y, Cripe C, Cincione F, de Rijk W. The effect of the pulse-delay cure technique on residual strain in composites. Compendium 20:4-12, 1999
  37. Asmussen E, Peutzfelt A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res 80:1570-1573, 2001 https://doi.org/10.1177/00220345010800061801
  38. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility, and modulus of elasticity of lightcured dimethacrylate-based dental resins. Biomaterials 24:655-65, 2003 https://doi.org/10.1016/S0142-9612(02)00380-0
  39. Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater 16:3320-3326, 2000
  40. Lim BS, Ferracane JL, Sakaguchi RL, Condon JR. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater 18:436-444, 2002 https://doi.org/10.1016/S0109-5641(01)00066-5