• Title/Summary/Keyword: On pump

Search Result 3,867, Processing Time 0.028 seconds

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

Shattering Ratio of Manganese Nodule and Physical Properties of Powdered Manganese Nodule and Sea eottom Sediment (망간단괴의 분화율과 망간단괴 분말 및 해저퇴적물의 물리적 특성)

  • Choi, Hun-Soo;Kang, Jung-Seock;Chang, Se-Won;Koh, Sang-Mo;Um, In-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.277-287
    • /
    • 2007
  • To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.

Revised Korean Cough Guidelines, 2020: Recommendations and Summary Statements

  • Joo, Hyonsoo;Moon, Ji-Yong;An, Tai Joon;Choi, Hayoung;Park, So Young;Yoo, Hongseok;Kim, Chi Young;Jeong, Ina;Kim, Joo-Hee;Koo, Hyeon-Kyoung;Rhee, Chin Kook;Lee, Sei Won;Kim, Sung Kyoung;Min, Kyung Hoon;Kim, Yee Hyung;Jang, Seung Hun;Kim, Deog Kyeom;Shin, Jong Wook;Yoon, Hyoung Kyu;Kim, Dong-Gyu;Kim, Hui Jung;Kim, Jin Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.4
    • /
    • pp.263-273
    • /
    • 2021
  • Cough is the most common respiratory symptom that can have various causes. It is a major clinical problem that can reduce a patient's quality of life. Thus, clinical guidelines for the treatment of cough were established in 2014 by the cough guideline committee under the Korean Academy of Tuberculosis and Respiratory Diseases. From October 2018 to July 2020, cough guidelines were revised by members of the committee based on the first guidelines. The purpose of these guidelines is to help clinicians efficiently diagnose and treat patients with cough. This article highlights the recommendations and summary of the revised Korean cough guidelines. It includes a revised algorithm for the evaluation of acute, subacute, and chronic cough. For a chronic cough, upper airway cough syndrome (UACS), cough variant asthma (CVA), and gastroesophageal reflux disease (GERD) should be considered in differential diagnoses. If UACS is suspected, first-generation antihistamines and nasal decongestants can be used empirically. In cases with CVA, inhaled corticosteroids are recommended to improve cough. In patients with suspected chronic cough due to symptomatic GERD, proton pump inhibitors are recommended. Chronic bronchitis, bronchiectasis, bronchiolitis, lung cancer, aspiration, intake of angiotensin-converting enzyme inhibitor, intake of dipeptidyl peptidase-4 inhibitor, habitual cough, psychogenic cough, interstitial lung disease, environmental and occupational factors, tuberculosis, obstructive sleep apnea, peritoneal dialysis, and unexplained cough can also be considered as causes of a chronic cough. Chronic cough due to laryngeal dysfunction syndrome has been newly added to the guidelines.

The Surface Distribution of Dissolved Gases in the Southwestern East Sea: Comparison of the Primary Production and CO2 Absorption in Summer between Coastal Areas and the Ulleung Basin (동해 남서부해역의 표층 용존 기체 분포: 여름철 연안과 울릉분지의 일차생산력과 CO2 흡수 비교)

  • LEE, INHEE;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2021
  • The global coastal region is considered as a sink for atmospheric CO2. Since most of the studies in the East Sea focused on the Ulleung Basin, the importance of coastal region for carbon cycle has been overlooked. In this study, we compared the biological pump and CO2 absorption between the Ulleung Basin and coastal region by surface measurements of biological O2 supersaturation (𝚫O2/Ar) and partial pressure of CO2 (fCO2). Cold and less saline waters in the coastal regions were in contrast with a warm and saline water in the Ulleung Basin. The coastal waters near Samcheok and Pohang showed higher fluorescence, 𝚫O2/Ar, and lower fCO2 than those in the Ulleung Basin, indicating higher primary production and CO2 absorption in the areas. The average net community production estimated by 𝚫O2/Ar were 19 ± 6 and 60 ± 9 mmol O2 m-2d-1 in the Samcheok and Pohang, respectively, 2-7 times higher than that of 8 ± 4 mmol O2 m-2d-1 in the Ulleung Basin. Similarly, the average CO2 flux between the seawater and atmosphere were -17.1 ± 8.9 and -25.8 ± 13.2 mmol C m-2d-1 in the Samcheok and Pohang, respectively, 4-5 times higher than that of -4.7 ± 2.5 mmol C m-2d-1 in the Ulleung Basin. In the Samcheok and Pohang, degrees of N2 saturation were lower by 3% than that the ambient waters, suggesting the possibility of nitrogen fixation by primary producers.

Dry etching of polycarbonate using O2/SF6, O2/N2 and O2/CH4 plasmas (O2/SF6, O2/N2와 O2/CH4 플라즈마를 이용한 폴리카보네이트 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, S.H.;Cho, G.S.;Song, H.J.;Jeon, M.H.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We studied plasma etching of polycarbonate in $O_2/SF_6$, $O_2/N_2$ and $O_2/CH_4$. A capacitively coupled plasma system was employed for the research. For patterning, we used a photolithography method with UV exposure after coating a photoresist on the polycarbonate. Main variables in the experiment were the mixing ratio of $O_2$ and other gases, and RF chuck power. Especially, we used only a mechanical pump for in order to operate the system. The chamber pressure was fixed at 100 mTorr. All of surface profilometry, atomic force microscopy and scanning electron microscopy were used for characterization of the etched polycarbonate samples. According to the results, $O_2/SF_6$ plasmas gave the higher etch rate of the polycarbonate than pure $O_2$ and $SF_6$ plasmas. For example, with maintaining 100W RF chuck power and 100 mTorr chamber pressure, 20 sccm $O_2$ plasma provided about $0.4{\mu}m$/min of polycarbonate etch rate and 20 sccm $SF_6$ produced only $0.2{\mu}m$/min. However, the mixed plasma of 60 % $O_2$ and 40 % $SF_6$ gas flow rate generated about $0.56{\mu}m$ with even low -DC bias induced compared to that of $O_2$. More addition of $SF_6$ to the mixture reduced etch of polycarbonate. The surface roughness of etched polycarbonate was roughed about 3 times worse measured by atomic force microscopy. However examination with scanning electron microscopy indicated that the surface was comparable to that of photoresist. Increase of RF chuck power raised -DC bias on the chuck and etch rate of polycarbonate almost linearly. The etch selectivity of polycarbonate to photoresist was about 1:1. The meaning of these results was that the simple capacitively coupled plasma system can be used to make a microstructure on polymer with $O_2/SF_6$ plasmas. This result can be applied to plasma processing of other polymers.

Comparison of Effects of Normothermic and Hypothermic Cardiopulmonary Bypass on Cerebral Metabolism During Cardiac Surgery (체외순환 시 뇌 대사에 대한 정상 체온 체외순환과 저 체온 체외순환의 임상적 영향에 관한 비교연구)

  • 조광현;박경택;김경현;최석철;최국렬;황윤호
    • Journal of Chest Surgery
    • /
    • v.35 no.6
    • /
    • pp.420-429
    • /
    • 2002
  • Moderate hypothermic cardiopulmonary bypass (CPB) has commonly been used in cardiac surgery. Several cardiac centers recently practice normothermic CPB in cardiac surgery, However, the clinical effect and safety of normothermic CPB on cerebral metabolism are not established and not fully understood. This study was prospectively designed to evaluate the clinical influence of normothermic CPB on brain metabolism and to compare it with that of moderate hypothermic CPB. Material and Method: Thirty-six adult patients scheduled for elective cardiac surgery were randomized to receive normothermic (nasopharyngeal temperature >34.5 $^{\circ}C$, n=18) or hypothermic (nasopharyngeal temperature 29~3$0^{\circ}C$, n=18) CPB with nonpulsatile pump. Middle cerebral artery blood flow velocity (VMCA), cerebral arteriovenous oxygen content difference (CAVO$_{2}$), cerebral oxygen extraction (COE), modified cerebral metabolic rate for oxygen (MCMRO$_{2}$), cerebral oxygen transport (TEO$_{2}$), cerebral venous desaturation (oxygen saturation in internal jugular bulb blood$\leq$50 %), and arterial and internal jugular bulb blood gas analysis were measured during six phases of the operation: Pre-CPB (control), CPB-10 min, Rewarm-1 (nasopharyngeal temperature 34 $^{\circ}C$ in the hypothermic group), Rewarm-2 (nasopharyngeal temperature 37 $^{\circ}C$ in the both groups), CPB-off and Post-CPB (skin closure after CPB-off). Postoperaitve neuropsychologic complications were observed in all patients. All variables were compared between the two groups. Result: VMCA at Rewarm-2 was higher in the hypothermic group (153.11$\pm$8.98%) than in the normothermic group (131.18$\pm$6.94%) (p<0.05). CAVO$_{2}$ (3.47$\pm$0.21 vs 4.28$\pm$0.29 mL/dL, p<0.05), COE (0.30$\pm$0.02 vs 0.39$\pm$0.02, p<0.05) and MCMRO$_{2}$ (4.71 $\pm$0.42 vs 5.36$\pm$0.45, p<0.05) at CPB-10 min were lower in the hypothermic group than in the normothermic group. The hypothermic group had higher TEO$_{2}$ than the normothermic group at CPB-10 (1,527.60$\pm$25.84 vs 1,368.74$\pm$20.03, p<0.05), Rewarm-2 (1,757.50$\pm$32.30 vs 1,478.60$\pm$27.41, p<0.05) and Post-CPB (1,734.37$\pm$41.45 vs 1,597.68$\pm$27.50, p<0.05). Internal jugular bulb oxygen tension (40.96$\pm$1.16 vs 34.79$\pm$2.18 mmHg, p<0.05), saturation (72.63$\pm$2.68 vs 64.76$\pm$2.49 %, p<0.05) and content (8.08$\pm$0.34 vs 6.78$\pm$0.43 mL/dL, p<0.05) at CPB-10 were higher in the hypothermic group than in the normothermic group. The hypothermic group had less incidence of postoperative neurologic complication (delirium) than the normothermic group (2 vs 4 patients, p<0.05). Lasting periods of postoperative delirium were shorter in the hypothermic group than in the normothermic group (60 vs 160 hrs, p<0.01). Conclusion: These results indicate that normothermic CPB should not be routinely applied in all cardiac surgery, especially advanced age or the clinical situations that require prolonged operative time. Moderate hypothermic CPB may have beneficial influences relatively on brain metabolism and postoperative neuropsychologic outcomes when compared with normothermic CPB.