Comparison of Effects of Normothermic and Hypothermic Cardiopulmonary Bypass on Cerebral Metabolism During Cardiac Surgery

체외순환 시 뇌 대사에 대한 정상 체온 체외순환과 저 체온 체외순환의 임상적 영향에 관한 비교연구

  • 조광현 (인제대학교 의과대학 부산 백병원 흉부외과학교실) ;
  • 박경택 (인제대학교 의과대학 부산 백병원 흉부외과학교실) ;
  • 김경현 (인제대학교 의과대학 부산 백병원 흉부외과학교실) ;
  • 최석철 (부산가톨릭대학교 보건과학대학 임상병리학과) ;
  • 최국렬 (인제대학교 데이터 정보학과) ;
  • 황윤호 (인제대학교 의과대학 부산 백병원 흉부외과학교실)
  • Published : 2002.06.01

Abstract

Moderate hypothermic cardiopulmonary bypass (CPB) has commonly been used in cardiac surgery. Several cardiac centers recently practice normothermic CPB in cardiac surgery, However, the clinical effect and safety of normothermic CPB on cerebral metabolism are not established and not fully understood. This study was prospectively designed to evaluate the clinical influence of normothermic CPB on brain metabolism and to compare it with that of moderate hypothermic CPB. Material and Method: Thirty-six adult patients scheduled for elective cardiac surgery were randomized to receive normothermic (nasopharyngeal temperature >34.5 $^{\circ}C$, n=18) or hypothermic (nasopharyngeal temperature 29~3$0^{\circ}C$, n=18) CPB with nonpulsatile pump. Middle cerebral artery blood flow velocity (VMCA), cerebral arteriovenous oxygen content difference (CAVO$_{2}$), cerebral oxygen extraction (COE), modified cerebral metabolic rate for oxygen (MCMRO$_{2}$), cerebral oxygen transport (TEO$_{2}$), cerebral venous desaturation (oxygen saturation in internal jugular bulb blood$\leq$50 %), and arterial and internal jugular bulb blood gas analysis were measured during six phases of the operation: Pre-CPB (control), CPB-10 min, Rewarm-1 (nasopharyngeal temperature 34 $^{\circ}C$ in the hypothermic group), Rewarm-2 (nasopharyngeal temperature 37 $^{\circ}C$ in the both groups), CPB-off and Post-CPB (skin closure after CPB-off). Postoperaitve neuropsychologic complications were observed in all patients. All variables were compared between the two groups. Result: VMCA at Rewarm-2 was higher in the hypothermic group (153.11$\pm$8.98%) than in the normothermic group (131.18$\pm$6.94%) (p<0.05). CAVO$_{2}$ (3.47$\pm$0.21 vs 4.28$\pm$0.29 mL/dL, p<0.05), COE (0.30$\pm$0.02 vs 0.39$\pm$0.02, p<0.05) and MCMRO$_{2}$ (4.71 $\pm$0.42 vs 5.36$\pm$0.45, p<0.05) at CPB-10 min were lower in the hypothermic group than in the normothermic group. The hypothermic group had higher TEO$_{2}$ than the normothermic group at CPB-10 (1,527.60$\pm$25.84 vs 1,368.74$\pm$20.03, p<0.05), Rewarm-2 (1,757.50$\pm$32.30 vs 1,478.60$\pm$27.41, p<0.05) and Post-CPB (1,734.37$\pm$41.45 vs 1,597.68$\pm$27.50, p<0.05). Internal jugular bulb oxygen tension (40.96$\pm$1.16 vs 34.79$\pm$2.18 mmHg, p<0.05), saturation (72.63$\pm$2.68 vs 64.76$\pm$2.49 %, p<0.05) and content (8.08$\pm$0.34 vs 6.78$\pm$0.43 mL/dL, p<0.05) at CPB-10 were higher in the hypothermic group than in the normothermic group. The hypothermic group had less incidence of postoperative neurologic complication (delirium) than the normothermic group (2 vs 4 patients, p<0.05). Lasting periods of postoperative delirium were shorter in the hypothermic group than in the normothermic group (60 vs 160 hrs, p<0.01). Conclusion: These results indicate that normothermic CPB should not be routinely applied in all cardiac surgery, especially advanced age or the clinical situations that require prolonged operative time. Moderate hypothermic CPB may have beneficial influences relatively on brain metabolism and postoperative neuropsychologic outcomes when compared with normothermic CPB.

심장수술시 체외순환은 저체온 기법으로 실시되지만 최근의 동향은 정상체온 체외순환 기법을 사용하려는 경향이 늘고 있다. 그러나 심장수술 동안 뇌 대사에 대한 정상 체온 체외순환의 임상적 유용성이나 안전성은 아직 완전히 이해되거나 확립되지 않은 상태이다. 저자들은 심장수술 동안 뇌 대사에 대한 정상 체온 체외순환 기법과 중등도 저체온 체외순환 기법의 영향을 비교 평가하기 위해 전향적 연구를 시행하게 되었다. 대상 및 방법: 36명의 성인 심장수술 환자들은 연구목적에 따라 정상 체온 체외순환군(이하 정상체온군, 비인두 온도>34.5$^{\circ}C$, n=18)과 중등도 저 체온 체외순환군(이하 저체온군, 비인두 온도 29~3$0^{\circ}C$, n=18)으로 한 뒤 비박동성 체외순환을 실시하였다. 전체 환자들에 대해 중대뇌 동맥 뇌혈류 속도(뇌혈류 속도), 뇌동정맥 산소 함량차, 뇌산소 추출률, 수정 뇌산소 대사율, 뇌산소 운반율, 뇌정맥 산소 불포화도(내경 정맥구 혈액 산소포화도$\leq$50%), 기타 동맥 및 내경 정맥구 혈액의 가스분석 등을 체외순환 전(기준치), 체외순환-10분, 재가온-1기(저체온군의 비인두 온도 34$^{\circ}C$때), 재가온-2기(양 그룹의 비인두 온도 37$^{\circ}C$때), 체외순환 종료 직후, 흉부 피부 봉합기 때 측정하였다. 수술 후 신경학적 합병증 역시 관찰하였으며, 전술한 모든 변수들을 양 그룹간에 비교 분석하였다. 결과: 뇌혈류 속도는 재가온­2 때 저체온군(153.11$\pm$8.98 %)이 정상체온군(131.18$\pm$6.94 %) 보다 유의하게 높았다(p<0.05). 체외순환 10분 때의 뇌동정맥 산소함량차(3.47$\pm$0.21 vs 4.28$\pm$0.29 mL/dL, p<0.05), 뇌산소 추출률(0.30$\pm$0.02 vs 0.39$\pm$0.02, p<0.05), 그리고 뇌산소 대사율(4.71$\pm$0.42 vs 5.36$\pm$0.45, p<0.05)은 저체온군이 정상체온군 보다 유의하게 낮았다. 뇌산소 운반율은 저체온군이 정상체온군 보다 체외순환 10분(1,527.60$\pm$25.84 vs 1,368.74$\pm$20.03, p<0.05), 재가온-2기(1,757.50$\pm$32.30 vs 1,478.60$\pm$27.41, p<0.05), 흉부 피부봉합기 때(1,734.37$\pm$41.45 vs 1,597.68$\pm$27.50, p<0.05) 유의하게 더 높았다. 체외순환 10분 때 내경 정맥구의 산소분압(40.96$\pm$1.16 vs 34.79$\pm$2.18 mmHg, p<0.05), 산소포화도(72.63$\pm$2.68 vs 64.76$\pm$2.49 %, p<0.05), 그리고 산소함량(8.08$\pm$0.34 vs 6.78$\pm$0.43 mL/dL, p<0.05)은 저체온군이 정상체온군 보다 유의하게 더 높았다. 수술 후 신경학적 합병증(섬망) 발생 환자 수는 저체온군이 정상체온군 보다 유의하게 적었고(2 명 vs 4 명, p<0.05) 섬망증세의 지속시간 역시 저체온군이 정상체온군 보다 훨씬 짧았다(60 시간 vs 160 시간, p<0.01). 결론: 이상의 연구 결과들을 볼 때 정상 체온 체외순환 기법은 고령환자나 장시간 수술환자에 있어 일상적 방법으로 적용하기에 문제가 있을 것 같으며 중등도 저체온 체외순환이 정상 체온 체외순환보다 뇌대사 및 수술 후 신경학적 결과에 더 바람직 할 것으로 판단된다.

Keywords

References

  1. J Cardiothorac Vasc Anesth v.10 Normothermic vs hypothermic cardiopulmonary bypass: Cntral nervous system outcomes McLean RF;Wong B https://doi.org/10.1016/S1053-0770(96)80178-9
  2. Eur J Cardiothorac Surg v.7 Warm body, cold heart surgery: clinical experience in 2871 patients Singh AK;Feng WC;Bert AA;Rotenberg FA https://doi.org/10.1016/1010-7940(93)90208-S
  3. Ann Thorac Surg v.107 Prospective, randomized trial of retrograde warm blood cardioplegia: myocardial benefit and neuological threat Martin TD;Craver JM;Gott JP
  4. J Thorac Cardiovasc Surg v.107 A prospective, randomized comparison of cerebral venous oxygen sturation during normothermic and hypothermic cardiopulmonary bypass Cook DJ;Oliver WC Jr;Orszulak TA;Daly RC
  5. Lancet v.343 The Warm Heart Investigators. Randomized trial of normothermic versus hypothermic coronary bypass surgery https://doi.org/10.1016/S0140-6736(94)91519-9
  6. J Neurosurg v.57 Noninvasive Transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries Aaslid R;Markwalder TM;Nornes H https://doi.org/10.3171/jns.1982.57.6.0769
  7. Stroke v.25 Changes in blood flow velocity i the middle cerebral artery during nonpulsatile hypothermic cardiopulmonary bypass Endoh H;Shimoji K https://doi.org/10.1161/01.STR.25.2.403
  8. Anesth Analg v.86 The effect of hemodilution on cerebral blood flow velocity in anesthetized patients Bruder N;Cohen B;Pellissier D;Francois G https://doi.org/10.1097/00000539-199802000-00020
  9. Anesth Anal v.76 Cerebral blood flow and metabolism during cardiopulmonary bypass Schell RM;Kern FH;Greeley WJ(et al.)
  10. Lancet v.1 Long cross-clamp time with warm heart surgery Lichtenstein SV;EL Dalati H;Panos A
  11. J Neurosurg v.57 Nonivasive Transcranial Doppler ultrasound recording of flow velocity in basal cerbral arteries Aaslid R;Markwalder TM;Normes H https://doi.org/10.3171/jns.1982.57.6.0769
  12. Anesthesiology v.73 Correlation of transcranial Doppler and cerebral blood flow in patients with postdural headaches Stump DA;Bowton DL;Prough DS;Newman SP;Tegeler CH
  13. J Thorac Cardiovasc Surg v.102 Transcranial Doppler-estimated versus thermodilution-estimated cerebral blood flow during cardiac operations. Influence of temperature and arterial carbon dioxide tension Van der Linden J;Wesslen O;Ekroth R;Tyden H;von Ahn H
  14. Cerebrovascular Disorders (ed 3) Toole JF
  15. Ann Thorac Surg v.58 Jugular bulb desaturation and cognitive dysfunction after cardiopulmonary bypass. Croughwell ND;Newman MF;Blumenthal JA(et al.) https://doi.org/10.1016/0003-4975(94)91666-7
  16. Ann Thorac Surg v.56 Cerebral injury and cardiac operations Mills SA https://doi.org/10.1016/0003-4975(93)91142-A
  17. Ann Thorac Surg v.69 Effect of temperature cardiopulmonary bypass in swine Cook DJ;Plochl W;Orszulak TA https://doi.org/10.1016/S0003-4975(99)01327-2
  18. Anesthesiology v.81 The effect of hypothermia on the rate of excitatory amino acids release after cerebral ischemia Nachasima K;Todd MM https://doi.org/10.1097/00000542-199409001-00814
  19. Anesthesiology v.81 Neuronal protection by mild hypothermia is mediated by inhibition of protein kinase C activation Ishikawa T;Setoyama K;Kawata R https://doi.org/10.1097/00000542-199409001-00854
  20. Stroke v.22 Mild hypothermia ameliorates ubiqutin synthese and prevents delayed neuronal death in the gerbil hippocampus Yamashita K;Eguchi Y;Kajiwara K https://doi.org/10.1161/01.STR.22.12.1574
  21. J Cardic Surg v.5 Pathophysiology of cardiopulmonary bypass: Current issues Utley JR https://doi.org/10.1111/j.1540-8191.1990.tb01036.x
  22. Ann Thorac Surg v.17 Particulate microembolism during cardiac surgery Solis RT;Noon Gp;Beall AC https://doi.org/10.1016/S0003-4975(10)65661-5
  23. Thorax v.31 Transitory Cerebral microvascular blockade after cardiopulmonary bypass Patterson RH;Rosenfeld PR;Porro RS
  24. Ann Surg v.208 The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin, hemodilution Moor FD Jr;Warner KG;Assousa S https://doi.org/10.1097/00000658-198807000-00014
  25. J Neurol Sci v.123 Influence of hyperglycemia on infarct size and clinical outcome of acute ischemic stroke patients with intracranial arterial occlusion Toni D;De Michelle M;Fiorelli M https://doi.org/10.1016/0022-510X(94)90214-3