• 제목/요약/키워드: Omics Techniques

검색결과 20건 처리시간 0.024초

Multi-omics techniques for the genetic and epigenetic analysis of rare diseases

  • Yeonsong Choi;David Whee-Young Choi;Semin Lee
    • Journal of Genetic Medicine
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2023
  • Until now, rare disease studies have mainly been carried out by detecting simple variants such as single nucleotide substitutions and short insertions and deletions in protein-coding regions of disease-associated gene panels using diagnostic next-generation sequencing in association with patient phenotypes. However, several recent studies reported that the detection rate hardly exceeds 50% even when whole-exome sequencing is applied. Therefore, the necessity of introducing whole-genome sequencing is emerging to discover more diverse genomic variants and examine their association with rare diseases. When no diagnosis is provided by whole-genome sequencing, additional omics techniques such as RNA-seq also can be considered to further interrogate causal variants. This paper will introduce a description of these multi-omics techniques and their applications in rare disease studies.

Multi-Omics Approaches to Improve Meat Quality and Taste Characteristics

  • Young-Hwa Hwang;Eun-Yeong Lee;Hyen-Tae Lim;Seon-Tea Joo
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1067-1086
    • /
    • 2023
  • With rapid advances in meat science in recent decades, changes in meat quality during the pre-slaughter phase of muscle growth and the post-slaughter process from muscle to meat have been investigated. Commonly used techniques have evolved from early physicochemical indicators such as meat color, tenderness, water holding capacity, flavor, and pH to various omic tools such as genomics, transcriptomics, proteomics, and metabolomics to explore fundamental molecular mechanisms and screen biomarkers related to meat quality and taste characteristics. This review highlights the application of omics and integrated multi-omics in meat quality and taste characteristics studies. It also discusses challenges and future perspectives of multi-omics technology to improve meat quality and taste. Consequently, multi-omics techniques can elucidate the molecular mechanisms responsible for changes of meat quality at transcriptome, proteome, and metabolome levels. In addition, the application of multi-omics technology has great potential for exploring and identifying biomarkers for meat quality and quality control that can make it easier to optimize production processes in the meat industry.

남조류의 생리·생태 연구에서 분자생태유전학적 기법의 역할 및 전망 (Prospect and Roles of Molecular Ecogenetic Techniques in the Ecophysiological Study of Cyanobacteria)

  • 안치용
    • 생태와환경
    • /
    • 제51권1호
    • /
    • pp.16-28
    • /
    • 2018
  • 남조류에 대한 오랜 연구로 많은 사실을 알게 되었음에도 여전히 미지의 영역으로 남아있는 부분이 많은데, 분자 생물학에 기반한 오믹스 기술의 발전으로 새로운 도구를 이용한 다른 관점에서의 연구가 최근 활발해지고 있다. 일차적으로는 유전체 염기서열 분석기술을 사용하여 다양한 남조류의 유전체 비교분석과 유전자의 발현 양상을 연구함으로써, 독소 합성의 조절 기작 등 생리적 특성이 나타나는 원리 규명에 많은 노력이 기울여지고 있다. 또한 남조류 유전형의 다양성과 이들이 밀접하게 상호작용하는 박테리아 군집이 계절적 및 환경적 요인에 어떻게 반응하여 변화하고, 이러한 변화가 생태계에는 어떤 영향을 미치는지에 대한 연구가 생물정보학 분석기법과 결합하면서, 생태계의 복잡한 작동방식에 대한 이해도 늘어나고 있다. 특히 다양한 오믹스 기법을 복합 적용함으로써 생태계 안에서 일어나는 모든 층위의 생물학적 반응에 대한 총체적 그림을 그리는 것이 현실화되고 있으며, 이렇게 그려진 설계도로부터 녹조를 효과적으로 제어하고 건강한 수생태계를 유지할 수 있는 새로운 통찰의 가능성에 대한 기대가 고조되고 있다.

Recent insight and future techniques to enhance rumen fermentation in dairy goats

  • Mamuad, Lovelia L.;Lee, Sung Sill;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8_spc호
    • /
    • pp.1321-1330
    • /
    • 2019
  • Recent development of novel techniques in systems biology have been used to improve and manipulate the rumen microbial ecosystem and gain a deeper understanding of its physiological and microbiological interactions and relationships. This provided a deeper insight and understanding of the relationship and interactions between the rumen microbiome and the host animal. New high-throughput techniques have revealed that the dominance of Proteobacteria in the neonatal gut might be derived from the maternal placenta through fetal swallowing of amniotic fluid in utero, which gradually decreases in the reticulum, omasum, and abomasum with increasing age after birth. Multi "omics" technologies have also enhanced rumen fermentation and production efficiency of dairy goats using dietary interventions through greater knowledge of the links between nutrition, metabolism, and the rumen microbiome and their effect in the environment. For example, supplementation of dietary lipid, such as linseed, affects rumen fermentation by favoring the accumulation of ${\alpha}$-linolenic acid biohydrogenation with a high correlation to the relative abundance of Fibrobacteriaceae. This provides greater resolution of the interlinkages among nutritional strategies, rumen microbes, and metabolism of the host animal that can set the foundation for new advancements in ruminant nutrition using multi 'omics' technologies.

Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법 (Set Covering-based Feature Selection of Large-scale Omics Data)

  • 마정우;안기동;김광수;류홍서
    • 한국경영과학회지
    • /
    • 제39권4호
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

Advances in Systems Biology Approaches for Autoimmune Diseases

  • Kim, Ho-Youn;Kim, Hae-Rim;Lee, Sang-Heon
    • IMMUNE NETWORK
    • /
    • 제14권2호
    • /
    • pp.73-80
    • /
    • 2014
  • Because autoimmune diseases (AIDs) result from a complex combination of genetic and epigenetic factors, as well as an altered immune response to endogenous or exogenous antigens, systems biology approaches have been widely applied. The use of multi-omics approaches, including blood transcriptomics, genomics, epigenetics, proteomics, and metabolomics, not only allow for the discovery of a number of biomarkers but also will provide new directions for further translational AIDs applications. Systems biology approaches rely on high-throughput techniques with data analysis platforms that leverage the assessment of genes, proteins, metabolites, and network analysis of complex biologic or pathways implicated in specific AID conditions. To facilitate the discovery of validated and qualified biomarkers, better-coordinated multi-omics approaches and standardized translational research, in combination with the skills of biologists, clinicians, engineers, and bioinformaticians, are required.

Omics of Cancer

  • Bhati, Aniruddha;Garg, H.;Gupta, A.;Chhabra, H.;Kumari, A.;Patel, T.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4229-4233
    • /
    • 2012
  • With the advances in modern diagnostic expertise for cancer, certain approaches allowing scanning of the complete genome and the proteome are becoming very useful for researchers. These high throughput techniques have already proven power, over traditional detection methods, in differentiating disease sub-types and identifying specific genetic events during progression of cancer. This paper introduces major branches of omics-technology and their applications in the field of cancer. It also addresses current road blocks that need to be overcome and future possibilities of these methods in oncogenic detection.

Single-Cell Toolkits Opening a New Era for Cell Engineering

  • Lee, Sean;Kim, Jireh;Park, Jong-Eun
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.127-135
    • /
    • 2021
  • Since the introduction of RNA sequencing (RNA-seq) as a high-throughput mRNA expression analysis tool, this procedure has been increasingly implemented to identify cell-level transcriptome changes in a myriad of model systems. However, early methods processed cell samples in bulk, and therefore the unique transcriptomic patterns of individual cells would be lost due to data averaging. Nonetheless, the recent and continuous development of new single-cell RNA sequencing (scRNA-seq) toolkits has enabled researchers to compare transcriptomes at a single-cell resolution, thus facilitating the analysis of individual cellular features and a deeper understanding of cellular functions. Nonetheless, the rapid evolution of high throughput single-cell "omics" tools has created the need for effective hypothesis verification strategies. Particularly, this issue could be addressed by coupling cell engineering techniques with single-cell sequencing. This approach has been successfully employed to gain further insights into disease pathogenesis and the dynamics of differentiation trajectories. Therefore, this review will discuss the current status of cell engineering toolkits and their contributions to single-cell and genome-wide data collection and analyses.

식물 생명공학과 생물정보학 (Plant Biotechnology and Bioinformatics)

  • 김정은;백효정;김영철;허철구
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.209-222
    • /
    • 2006
  • 애기 장대와 벼의 전체 게놈 염기서열 분석이 완료되었고, 다량의 EST 데이터가 많은 식물에서 이용 가능하게 되었다. 또한, 방대한 양의 다양한 생물학적 데이터들이 transcriptomics, proteomics, metabolomics와 같은 여러 '-omics' 기술에 의하여 만들어져 왔다. 생물정보학은 이런 방대한 양의 생물학적 데이터로부터 유용한 정보를 얻는데 필수적이고도 매우 중요한 역할을 수행한다. 이 총설에서, 우리는 대량의 데이터를 생성하는 실험적 방법들과, 식물 병 저항성과 분자 육종과 같은 식물 연구분야로의 응용, 그리고 식물 생명공학의 연구 개발에 유용한 생물정보학적 기술과. 인터넷 정보 사이트들을 소개하였다. 우리는 새로운 실험 방법들과 생물정보학적 분석 기술들이 식물 생명공학 발전에 중요하게 기여할 것으로 기대하고 있으며, 생물정보학은 식물 생명공학의 연구 개발에 있어서 결정적인 요소가 될 것이라 생각한다.