
Journal of
Genetic MedicineJGM

Multi-omics techniques for the genetic and epigenetic 
analysis of rare diseases 
Yeonsong Choi1,2 , David Whee-Young Choi1,2 , and Semin Lee1,2,*
1Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
2Korean Genomics Center, Ulsan National Institute of Science and Technology, Ulsan, Korea

Until now, rare disease studies have mainly been carried out by detecting simple variants such as single nucleotide substitu-
tions and short insertions and deletions in protein-coding regions of disease-associated gene panels using diagnostic next-
generation sequencing in association with patient phenotypes. However, several recent studies reported that the detection 
rate hardly exceeds 50% even when whole-exome sequencing is applied. Therefore, the necessity of introducing whole-
genome sequencing is emerging to discover more diverse genomic variants and examine their association with rare diseases. 
When no diagnosis is provided by whole-genome sequencing, additional omics techniques such as RNA-seq also can be 
considered to further interrogate causal variants. This paper will introduce a description of these multi-omics techniques and 
their applications in rare disease studies.
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Introduction

Globally, 3.5-5.9% of the general population is affected by 
rare diseases. Proportionately, this percentage seems insignifi-
cant, but the estimated number of patients with rare diseases 
adds up to 263-446 million people [1]. Thus, the total number of 
cases is not negligible and necessitates further research in this 
field of study for quick and accurate diagnoses.

A rare disease is defined as a condition affecting fewer than 
200,000 people in the United States [2] and fewer than 1 in 
2,000 people in Europe [3]. In Korea, a rare disease is defined as 
a condition affecting fewer than 20,000 people in the general 
population. In 2020, the number of rare disease cases in Korea 
was a total of 52,069. 

Rare disease patients take an average of 6-8 years to receive 

an accurate diagnosis [4]. According to statistics in Korea, almost 
80% of patients visited two or more hospitals before receiving 
a rare disease diagnosis, making it difficult to get an accurate 
and quick diagnosis [5]. If a patient is diagnosed with a causative 
mutation, they can receive economic support such as the Ex-
empted Calculation of Health Insurance. However, a significant 
number of patients remain undiagnosed even after a long pe-
riod of time.

Genetic causes are known to account for 80% of patients 
with rare diseases [6,7]. Currently, targeted sequencing or 
whole-exome sequencing (WES) technologies are mainly used 
to detect mutations that cause rare diseases. However, WES cov-
ers only protein-coding regions which comprise less than 2% of 
the genome, so there is a clear limitation in detecting mutations 
in intronic and intergenic regions, large-scale structural variants, 
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and repeat expansions. As a result, the WES-based diagnosis 
rate is about 25-41% [8]. For this reason, there have been ef-
forts to overcome this limitation of WES by adopting additional 
omics technologies such as whole-genome sequencing (WGS), 
RNA sequencing (RNA-seq), bisulfite sequencing, and assay for 
transposase-accessible chromatin using sequencing (ATAC-
seq) (Fig. 1). As the continuous development of next-generation 
sequencing (NGS) techniques has lowered the cost and time 
for these various omics techniques [9], they now can be more 
readily applied to rare disease diagnosis and study. In this review, 
we introduce some of the multi-omics techniques and studies 
harnessing them for rare disease studies.

Whole-Exome Sequencing vs.  
Whole-Genome Sequencing

Whole-exome sequencing (WES) is a method of sequencing 
protein-coding regions, which takes about 2% of our genome 
and has been widely used for the diagnosis of rare diseases. 
However, WES has limitations in being able to detect mutations 
occurring in non-coding regions, such as intronic/intergenic 
variants, splicing variants, and complex structural variants. To 
overcome these limitations, efforts have recently been made to 
introduce WGS technology to the diagnosis of rare diseases. 

A recent study by Burdick et al. [10] reported that 15 of 54 

(28%) diagnoses for Undiagnosed Diseases Network partici-
pants were not able to be solved by WES and required WGS or 
other omics techniques because WES failed to identify patho-
genic non-coding variants, copy number variations, and repeat 
expansions. The UK100K project also identified novel pathogenic 
non-coding variants disrupting the transcription of disease-
associated genes such as ARPC1B, GATA1, LRBA, and MPL using 
WGS [11]. One interesting reported case in their study is that 
a boy with autism spectrum disorder and thrombocytopenia 
turned out to carry a hemizygous deletion of a GATA1 enhancer, 
which explained his persistently low platelet count, elevated 
mean platelet volume, and normal RBC parameters except for 
mild dyserythropoietic that are typical in patients with a patho-
genic GATA1 mutation [12].

RNA Sequencing

RNA-seq is a technology for analyzing gene expression pat-
terns using NGS [13]. Compared to conventional microarray-
based methods, it is possible to detect gene expression levels 
more precisely at the base-pair level [14]. RNA-seq also has the 
advantage of being able to detect alternative splicing patterns 
and gene fusions, which are hard to be identified by WES and 
WGS. Although it should be considered that gene expression pat-
terns are tissue-specific, there are recent efforts to diagnose and 

Fig. 1. Schematic diagram of multiple omics techniques for identifying various genomic and epigenomic features in rare diseases. WES, whole-
exome sequencing; WGS, whole-genome sequencing; RNA-seq, RNA sequencing; BS-seq, Bisulfite sequencing; ATAC-seq, Assay for transposase-
accessible chromatin using sequencing.
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analyze rare diseases using RNA-seq data from blood samples. 
Frésard et al. [15] analyzed RNA-seq data from 94 individu-

als with undiagnosed rare diseases and compared them with 
publicly available RNA-seq data from healthy individuals and 
tissues to identify outlier expression of genes that are potentially 
implicated in rare diseases. They found that 1) under-expression 
outliers were more enriched in the genes sensitive to loss-of-
function mutations, 2) the number of splicing outliers was high-
er in patients, and 3) a large number of rare variants show allelic-
specific expression (ASE) biased toward the deleterious allele.

Ferraro et al. [16] also characterized transcriptomic abnormali-
ties such as gene expression, ASE, and alternative splicing from 
RNA-seq data of multiple different tissue types and developed a 
statistical model for predicting their impact by integrating more 
than 800 genomes matched with tissue-specific transcriptomes. 
They reported that outliers having aberrant gene expression, 
ASE, and splicing patterns tend to have a higher chance to carry 
a rare pathogenic variant near the corresponding gene.

Furthermore, a recent study from Oliver et al. [17] analyzed 47 
individuals with undiagnosed rare genetic diseases using RNA-
seq and reported 11 potentially pathogenic fusion transcripts 
such as SAMD12-EXT1 fusion in a patient with multiple exosto-
ses and ATM-SLC35F2 fusion in a patient with severe combined 
immunodeficiency.

Bisulfite Sequencing

In addition to genetic mutations, epigenomic changes can 
also cause rare diseases. In particular, given that mutations in 
DNA methyltransferases have been reported in various rare 
diseases such as Heyn–Sproul–Jackson syndrome and immuno-
deficiency-centromeric instability-facial anomalies syndrome 1 
(ICF1), it is necessary to accurately determine how these muta-
tions actually affect genome-wide methylation patterns. There 
have been various different techniques developed to profile ge-
nomic DNA methylation, and most of them are based on bisul-
fite treatment converting unmethylated cytosines to uracil by 
deamination while leaving methylated cytosines unconverted 
[18]. After bisulfite conversion, NGS can be used to distinguish 
unmethylated cytosines from methylated ones.

Sun et al. [19] interrogated genome-wide DNA methylation 
by whole-genome bisulfite sequencing of hereditary sensory 
and autonomic neuropathy type 1 with dementia and hear-
ing loss (HSAN1E) patients with DNMT1 mutations and their 
siblings. They found that all chromosomes are generally hypo-
methylated, and genes associated with differentially methylated 

regions were significantly enriched in NAD+/NADH metabolism 
pathways, which are implicated in diverse neurological disorders. 

Gatto et al. [20] interrogated the effects of DNMT3B dysfunc-
tion on the genome-wide DNA methylation profiles in ICF1 by 
performing reduced representation bisulfite sequencing of pa-
tient-derived B-cell lines. They found that pathogenic rare vari-
ants in DNMT3B can induce catalytic inactivation of DNMT3B 
and eventually lead to DNA hypomethylation, and the genes 
affected by the DNMT3B mutation-induced DNA hypomethyl-
ation were mostly direct targets of DNMT3B.

Assay for Transposase-Accessible Chromatin 
Using Sequencing

Chromatin accessibility is highly dynamic and a key epig-
enomic feature for defining cellular identity because gene 
expression is also regulated by physical accessibility to its regu-
latory elements such as enhancers, promoters, and insulators 
[21]. The genome-wide profiles of DNA accessibility can be 
characterized by various molecular techniques such as DNase 
I hypersensitive sites sequencing [22], formaldehyde-assisted 
identification of regulatory elements followed by sequencing 
[23], and ATAC-seq. Among them, ATAC-seq is the most recently 
developed chromatin accessibility assay and the fastest and 
most sensitive of the available assays [24].

A recent study by Luperchio et al. [25] adopted ATAC-seq to 
investigate shared epigenetic alterations in mouse models of 
Kabuki type 1 and 2 and Rubinstein-Taybi type 1 syndromes. 
They found that disruption of chromatin accessibility at pro-
moters frequently dysregulates downstream gene expression, 
and a considerable number of dysregulated genes were shared 
among the three rare disease mouse models, which may explain 
the shared disease manifestations. 

Conclusion

With the recent rapid development of NGS technology, causal 
variants have been identified for many rare diseases. However, 
in a significant number of rare diseases, pathogenic vari-
ants still have not been discovered, and studies on underlying 
mechanisms are also lacking. Here, we introduced recent efforts 
harnessing multi-omics approaches to improve the diagnostic 
yield and to better understand the molecular mechanism of rare 
diseases.

WGS can detect various genomic variants such as non-coding 
mutations, structural variants, and repeat expansions, which 
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cannot be accurately covered by WES. RNA-seq can be also very 
useful not only for understanding the downstream impact of 
genomic variants on gene expression profiles but also for de-
tecting additional variant types such as alternative splicing and 
gene fusions implicated in the pathogenesis of rare diseases. 
As transcriptomic features can be heavily affected by various 
epigenomic features such as DNA methylation, histone modifi-
cation, and DNA accessibility, additional epigenomic approaches 
such as bisulfite sequencing and ATAC-seq can be useful for un-
derstanding the underlying mechanisms of pathogenic variants 
(Table 1, Fig. 1) [26-35]. 

Overall, by integrating and analyzing these various omics 
techniques, it is expected that disease-associated variants will 
be more precisely identified, and pathogenesis will be better un-
derstood, thereby increasing the diagnosis rate of diseases and 
ultimately contributing to the development of novel treatment 
technologies.
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