Browse > Article
http://dx.doi.org/10.11614/KSL.2018.51.1.016

Prospect and Roles of Molecular Ecogenetic Techniques in the Ecophysiological Study of Cyanobacteria  

Ahn, Chi-Yong (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Publication Information
Abstract
Although physiological and ecological characteristics of cyanobacteria have been studied extensively for decades, unknown areas still remain greater than the already known. Recently, the development of omics techniques based on molecular biology has made it possible to view the ecosystem from a new and holistic perspective. The molecular mechanism of toxin production is being widely investigated, by comparative genomics and the transcriptomic studies. Biological interaction between bacteria and cyanobacteria is also explored: how their interactions and genetic biodiversity change depending on seasons and environmental factors, and how these interactions finally affect each component of ecosystem. Bioinformatics techniques have combined with ecoinformatics and omics data, enabling us to understand the underlying complex mechanisms of ecosystems. Particularly omics started to provide a whole picture of biological responses, occurring from all layers of hierarchical processes from DNA to metabolites. The expectation is growing further that algal blooms could be controlled more effectively in the near future. And an important insight for the successful bloom control would come from a novel blueprint drawn by omics studies.
Keywords
algal bloom; cyanobacteria; genotype; informatics; omics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, W., H. Shen, P. Shi, J. Chen, L. Ni and P. Xie. 2016. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. Journal of Applied Phycology 28: 1111-1123.   DOI
2 Xu, S., Q. Sun, X. Zhou, X. Tan, M. Xiao, W. Zhu and M. Li. 2016. Polysaccharide biosynthesis-related genes explain phenotype-genotype correlation of Microcystis colonies in Meiliang Bay of Lake Taihu, China. Scientific Reports 6: 35551.   DOI
3 Yang, Z., F. Kong, X. Shi and H. Cao. 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563: 225-230.   DOI
4 Ye, W., X. Liu, J. Tan, D. Li and H. Yang. 2009. Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8: 637-644.   DOI
5 Yoshida, M., T. Yoshida, Y. Takashima, N. Hosoda and S. Hiroishi. 2007. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters 266: 49-53.   DOI
6 Zhicong, W., D. Li, X. Cao, C. Song and Y. Zhou. 2015. Photosynthesis regulates succession of toxic and nontoxic strains in blooms of Microcystis (Cyanobacteria). Phycologia 54: 640-648.   DOI
7 Zhu, L., A. Zancarini, I. Louati, S. De Cesare, C. Duval, K. Tambosco, C. Bernard, D. Debroas, L. Song, J. Leloup and J.F. Humbert. 2016. Bacterial communities associated with four cyanobacterial genera display structural and functional differences: Evidence from an experimental approach. Frontiers in Microbiology 7: article 1662.
8 Zilliges, Y., J.C. Kehr, S. Meissner, K. Ishida, S. Mikkat, M. Hagemann, A. Kaplan, T. Börner and E. Dittmann. 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6: e17615.   DOI
9 Juttner, F. and S.B. Watson. 2007. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and Environmental Microbiology 73: 4395-4406.   DOI
10 Joung, S.-H., H.-M. Oh, S.-R. Ko and C.-Y. Ahn. 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10: 188-193.   DOI
11 Kaneko, T., N. Narajima, S. Okamoto, I. Suzuki, Y. Tanabe, M. Tamaoki, Y. Nakamura, F. Kasai, A. Watanabe and K. Kawashima. 2007. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Research 14: 247-256.   DOI
12 Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda and S. Tabata. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research 3: 109-136.   DOI
13 Kardinaal, W.E.A., I. Janse, M. Kamst-van Agterveld, M. Meima, J. Snoek, L.R. Mur, J. Huisman, G. Zwart and P.M. Visser. 2007. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology 48: 1-12.   DOI
14 Suominen, S., V.S. Brauer, A. Rantala-Ylinen, K. Sivonen and T. Hiltunen. 2017. Competition between a toxic and a non-toxic Microcystis strain under constant and pulsed nitrogen and phosphorus supply. Aquatic Ecology 51: 117-130.   DOI
15 Kim, S.-G., S.-H. Joung, C.-Y. Ahn, S.-R. Ko, S.M. Boo and H.- M. Oh. 2010. Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from eutrophic reservoir. FEMS Microbiology Ecology 74: 93-102.   DOI
16 Kurmayer, R. and T. Kutzenberger. 2003. Application of realtime PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Applied and Environmental Microbiology 9: 6723-6730.
17 Paerl, H.W. 2014. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4: 988-1012.   DOI
18 Paerl, H.W. and J. Huisman. 2008. Blooms like it hot. Science 320: 57-58.   DOI
19 Paerl, H.W. and J.T. Scott. 2010. Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science & Technology 44: 7756-7758.   DOI
20 Straub, C., P. Quillardet, J. Vergalli, N.T. de Marsac and J.F. Humbert. 2011. A day in the life of Microcystis aeruginosa strain PCC 7806 as revealed by a transcriptomic analysis. PLoS ONE 6: e16208.   DOI
21 Tan, W., Y. Liu, Z. Wu, S. Lin, G. Yu, B. Yu and R. Li. 2010. cpcBA-IGS as an effective marker to characterize Microcystis wesenbergii (Komarek) Komarek in Kondrateva (cyanobacteria). Harmful Algae 9: 607-612.   DOI
22 Tanabe, Y. and M.M. Watanabe. 2011. Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa. PLoS ONE 6: e17085.   DOI
23 Burke, C., P. Steinberg, D. Rusch, S. Kjelleberg and T. Thomas. 2011. Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences 108: 14288-14293.   DOI
24 D’Agostino, P.M., J.N. Woodhouse, A.K. Makower, A.C. Yeung, S.E. Ongley, M.L. Micallef, M.C. Moffitt and B.A. Neilan. 2016. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria. Environmental Microbiology Reports 8: 3-13.   DOI
25 Davis, T.W., D.L. Berry, G.L. Boyer and C.J. Gobler. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715-725.   DOI
26 Deblois, C.P. and P. Juneau. 2012. Comparison of resistance to light stress in toxic and non-toxic strains of Microcystis aeruginosa (cyanophyta). Journal of Phycology 48: 1002-1011.   DOI
27 Parveen, B., V. Ravet, C. Djediat, I. Mary, C. Quiblier, D. Debroas and J.F. Humbert. 2013. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environmental Microbiology Reports 5: 716-724.
28 Paerl, H.W., H. Xu, M.J. McCarthy, G. Zhu, B. Qin, Y. Li and W.S. Gardner. 2011 Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Research 45: 1973-1983.   DOI
29 Paerl, H.W., W.S. Gardner, M.J. McCarthy, B.L. Peierls and S.W. Wilhelm. 2014. Algal blooms: Noteworthy nitrogen. Science 346: 175.
30 Park, Y.-S. and S.-J. Hwang. 2016. Ecological monitoring, assessment, and management in freshwater systems. Water (Switzerland) 8: 324.
31 Penn, K., J. Wang, S.C. Fernando and J.R. Thompson. 2014. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME Journal 8: 1866-1878.   DOI
32 Phelan, R.R. and T.G. Downing. 2011. A growth advantage for microcystin production by Microcystis PCC7806 under high light. Journal of Phycology 47: 1241-1246.   DOI
33 Rantala, A., D.P. Fewer, M. Hisbergues, L. Rouhiainen, J. Vaitomaa, T. Borner and K. Sivonen. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences 101: 568-573.   DOI
34 Van Gremberghe, I., F. Leliaert, J. Mergeay, P. Vanormelingen, K. Van der Gucht, A.-E. Debeer, G. Lacerot, L. De Meester and W. Vyverman. 2011. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE 6: e19561.   DOI
35 Tillett, D., E. Dittmann, M. Erhard, H. von Dohren, T. Borner and B.A. Neilan. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chemistry & Biology 7: 753-764.   DOI
36 Van de Waal, D.B., J.M.H. Verspagen, J.F. Finke, V. Vournazou, A.K. Immers, W.E.A. Kardinaal, L. Tonk, S. Becker, E. Van Donk, P.M. Visser and J. Huisman. 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising $CO_2$. ISME Journal 5: 1438-1450.   DOI
37 Van Gremberghe, I., P. Vanormelingen, B. Vanelslander, K. Van Der Gucht, S. D’Hondt, L. De Meester and W. Vyverman. 2009. Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing. Oikos 118: 1647-1658.   DOI
38 Gan, N., Y. Xiao, L. Zhu, Z. Wu, J. Liu, C. Hu and L. Song. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environmental Microbiology 14: 730-742.   DOI
39 Frangeul, L., P. Quillardet, A.M. Castets, J.F. Humbert, H.C. Matthijs, D. Cortez, A. Tolonen, C.C. Zhang, S. Gribaldo, J.C. Kehr, Y. Zilliges, N. Ziemert, S. Becker, E. Talla, A. Latifi, A. Billault, A. Lepelletier, E. Dittmann, C. Bouchier and N.T. de Marsac. 2008. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9: 274.   DOI
40 Fuks, D., J. Radic, T. Radic, M. Najdek, M. Blazina, D. Degobbis and N. Smodlaka. 2005. Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Science of the Total Environment 353: 178-188.   DOI
41 Li, Y. and D. Li. 2012. Competition between toxic Microcystis aeruginosa and nontoxic Microcystis wesenbergii with Anabaena PCC7120. Journal of Applied Phycology 24: 69-78.   DOI
42 Kurmayer, R., G. Christiansen and I. Chorus. 2003. The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. Applied and Environmental Microbiology 69: 787-795.   DOI
43 Lee, Y.-K., C.-Y. Ahn, H.-S. Kim and H.-M. Oh. 2010. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnology Letters 32: 1673-1678.   DOI
44 Lemes, G.A.F., R. Kersanach, L.P. Pinto, O.A. Dellagostin, J.S. Yunes and A. Matthiensen. 2008. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicology and Environmental Safety 69: 358-365.   DOI
45 Meissner, S., J. Fastner and E. Dittmann. 2013. Microcystin production revisited: conjugate formation makes a major contribution. Environmental Microbiology 15: 1810-1820.   DOI
46 Makarewicz, J.C. and P. Bertram. 1991. Evidence for the restoration of the Lake Erie ecosystem - water quality, oxygen levels, and pelagic function appear to be improving. Bioscience 41: 216-223.   DOI
47 Maruyama T., K. Kato, A. Yokoyama, T. Tanaka, A. Hiaishi and H.D. Park. 2003. Dynamics of microcystin degrading bacteria in mucilage of Microcystis. Microbial Ecology 46: 279-288.   DOI
48 Meissner, S., D. Steinhauser and E. Dittmann. 2015. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environmental Microbiology 17: 1497-1509.   DOI
49 Rinta-Kanto, J.M., E.A. Konopko, J.M. DeBruyn, R.A. Bourbonniere, G.L. Boyer and S.W. Wilhelm. 2009. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 8: 665-673.   DOI
50 Rinta-Kanto, J.M. 2007. Biogeography and genetic diversity of toxin producing cyanobacteria in a Laurentian Great Lake. Ph.D. Dissertation, University of Tennessee. pp. 197.
51 Sabart, M., D. Pobel, E. Briand, B. Combourieu, M.J. Salençon, J.F. Humbert and D. Latour. 2010. Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Applied and Environmental Microbiology 76: 4750-4759.   DOI
52 Sandrini, G., H.C.P. Matthijs, J.M.H. Verspagen, G. Muyzer and J. Huisman. 2014. Genetic diversity of inorganic carbon uptake systems causes variation in $CO_2$ response of the cyanobacterium Microcystis. ISME Journal 8: 589-600.   DOI
53 Sandrini, G., R.P. Tann, J.M. Schuurmans, S.A. van Beusekom, H.C.P. Matthijs and J. Huisman. 2016. Diel variation in gene expression of the $CO_2$-concentrating mechanism during a harmful cyanobacterial bloom. Frontiers in Microbiology 7: article 551.
54 Schatz, D., Y. Keren, O. Hadas, S. Carmeli, A. Sukenik and A. Kaplan. 2005. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environmental Microbiology 7: 798-805.   DOI
55 Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897-899.   DOI
56 Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng and S.E.M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254-11258.   DOI
57 Guedes, I.A., D.M. da Costa Leite, L.A. Manhaes, P.M. Bisch, S.M.F.O. Azevedo and A.B.F. Pacheco. 2014. Fluctuations in microcystin concentrations, potentially toxic Microcystis and genotype diversity in a cyanobacterial community from a tropical reservoir. Harmful Algae 39: 303-309.   DOI
58 Harke, M.J. and C.J. Gobler. 2013. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS ONE 8: e69834.   DOI
59 Harke, M.J., M.M. Steffen, C.J. Gobler, T.G. Otten, S.W. Wilhelm, S.A. Wood and H.W. Paerl. 2016b. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4-20.   DOI
60 Harke, M.J., T.W. Davis, S.B. Watson and C.J. Gobler. 2016a. Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys. Environmental Science & Technology 50: 604-615.   DOI
61 Hong, D.-G., K.-S. Jeong, D.-K. Kim and G.-J. Joo. 2014. Remedial strategy of algal proliferation in a regulated river system by integrated hydrological control: An evolutionary modelling framework. Marine and Freshwater Research 65: 379-395.   DOI
62 Hotto, A.M., M.F. Satchwell, D.L. Berry, C.J. Gobler and G.L. Boyer. 2008. Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae 7: 671-681.   DOI
63 Hur, M., I. Lee, B.-M. Tak, H.J. Lee, J.J. Yu, S.U. Cheon and B.-S. Kim. 2013. Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea. Water Research 47: 6973-6982.   DOI
64 Jahnichen, S., T. Ihle, T. Petzoldt and J. Benndorf. 2007. Impact of inorganic carbon availability on microcystin production by Microcystis aeruginosa PCC 7806. Applied and Environmental Microbiology 73: 6994-7002.   DOI
65 Otten, T.G., J.L. Graham, T.D. Harris and T.W. Dreher. 2016. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomic analysis. Applied and Environmental Microbiology 82: 5410-5420.   DOI
66 Michalak, A.M., E.J. Anderson, D. Beletsky, S. Boland, N.S. Bosch, T.B. Bridgeman, J.D. Chaffin, K. Cho, R. Confesor, I. Daloglu, J.V. DePinto, M.A. Evans, G.L. Fahnenstiel, L. He, J.C. Ho, L. Jenkins, T.H. Johengen, K.C. Kuo, E. LaPorte, X. Liu, M.R. McWilliams, M.R. Moore, D.J. Posselt, R.P. Richards, D. Scavia, A.L. Steiner, E. Verhamme, D.M. Wright and M.A. Zagorski. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences 110: 6448-6452.   DOI
67 Morrison, J.M., K.D. Baker, R.M. Zamor, S. Nikolai, M.S. Elshahed and N.H. Youssef. 2017. Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA). PLoS ONE 12: e0177488.   DOI
68 Otsuka, S., S. Suda, R. Li, M. Watanabe, H. Oyaizu, S. Matsumoto and M.M. Watanabe. 1999. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiology Letters 172: 15-21.   DOI
69 Otsuka, S., S. Suda, S. Shibata, H. Oyaizu, S. Matsumoto and M.M. Watanabe. 2001. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. International Journal of Systematic and Evolutionary Microbiology 51: 873-879.   DOI
70 Otten, T.G. and H.W. Paerl. 2011. Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in Lake Taihu, China. Microbial Ecology 62: 907-918.   DOI
71 Srivastava, A., C.-Y. Ahn, R.K. Asthana, H.-G. Lee and H.-M. Oh. 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. BioMed Research International 2015: Article ID 584696.
72 Scott, J.T. and M.J. McCarthy. 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology and Oceanography 55: 1265-1270.   DOI
73 Shen, H., Y. Niu, P. Xie, M.I.N. Tao and X.I. Yang. 2011. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology 56: 1065-1080.   DOI
74 Song, H., M. Lavoie, X. Fan, H. Tan, G. Liu, P. Xu, Z. Fu, H.W. Paerl and H. Qian. 2017. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME Journal 11: 1865-1876.   DOI
75 Srivastava, A., G.-G. Choi, C.-Y. Ahn, H.-M. Oh, A.K. Ravi and R.K. Asthana. 2012. Dynamics of microcystin production and quantification of toxic Microcystis sp. using real-time PCR. Water Research 46: 817-827.   DOI
76 Srivastava, A., S. Singh, C.-Y. Ahn, H.-M. Oh and R.K. Asthana. 2013. Monitoring approaches for a toxic cyanobacterial bloom. Environmental Science & Technology 47: 8999-9013.   DOI
77 Steffen, M.M., B.S. Belisle, S.B. Watson, G.L. Boyer, R.A. Bourbonniere and S.W. Wilhelm. 2015. Metatranscriptomic evidence for co-occurring top-down and bottom-up controls on toxic cyanobacterial communities. Applied and Environmental Microbiology 81: 3268-3276.   DOI
78 Bozarth, C.S., A.D. Schwartz, J.W. Shepardson, F.S. Colwell and T.W. Dreher. 2010. Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season. Applied and Environmental Microbiology 76: 5207-5213.   DOI
79 Ahn, C.-Y., H.-M. Oh and Y.-S. Park. 2011. Evaluation of environmental factors on cyanobacterial bloom in eutrophic reservoir using artificial neural networks. Journal of Phycology 47: 495-504.   DOI
80 Berry, M.A., J.D. White, T.W. Davis, S. Jain, T.H. Johengen, G.J. Dick, O. Sarnelle and V.J. Denef. 2017. Are oligotypes meaningful ecological and phylogenetic units? A case study of Microcystis in freshwater lakes. Frontiers in Microbiology 8: Article 365.
81 Steffen, M.M., S.P. Dearth, B.D. Dill, Z. Li, K.M. Larsen, S.R. Campagna and S.W. Wilhelm. 2014. Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis. ISME Journal 8: 2080-2092.   DOI