• Title/Summary/Keyword: Oligosaccharides

Search Result 488, Processing Time 0.032 seconds

Preparation of Carrageenan Hydrolysates from Carrageenan with Organic Acid (유기산 처리에 의한 카라기난 가수분해물의 제조)

  • 주동식;조순영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.42-46
    • /
    • 2003
  • This research was carried out for searching the treatment conditions of organic acid and heating to prepare oligomers from the carrageenan. The applied treatments were autoclaving, micraowaving, and ultrasonicating with acetate, citrate, lactate, malate, and succinate. Among several physical depolymerization methods, auo-claving treatment was the most effective for hydrolyzing the carrageenan to low molecular compounds such as oligosaccharides. Citrate or malate was the most effective catalyst in hydrolyzing carrageenan to some oligo-saccharides among 5~7 different organic acids. An acceptable autoclaving condition for hydrolyzing carrageenan to oligosaccharides was to treat for 120 min at 110~12$0^{\circ}C$. The maximum depolymerization ratio produced by autoclaving was about 23.0%. The depolymerized carrageenan prepared by autoclaving at 12$0^{\circ}C$ had oligo-saccharides of 5~7 species.

A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on 13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides

  • Goffin, Dorothee;Bystricky, Peter;Shashkov, Alexander S.;Lynch, Mary;Hanon, Emilien;Paquot, Michel;Savage, Angela V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2535-2541
    • /
    • 2009
  • Prebiotic isomaltooligosaccharide preparations contain $\alpha$-D-glucooligosaccharides comprising isomaltooligosaccharides (IMOs) and non-prebiotic maltooligosaccharides (MOs). They are both glucose oligosaccharides characterized by their degree of polymerization (DP) value (from 2 to $\sim$10), linkages types and positions (IMOs: $\alpha$-(1$\rightarrow$2, 3, 6 and in a lower proportion internal 1$\rightarrow$4) linkages, MOs: α-(1$\rightarrow$4) linkages). Their structure is the key factor for their prebiotic potential. In order to determine and elucidate the exact structure of unknown IMOs and MOs, unambiguous assignments of $^{13}C$ and $^1H$ chemical shifts of commercial standards, representative of IMOs and MOs diversity, have been determined using optimized standard one and two-dimensional experiments such as $^1H$ NMR, $^{13}C$ NMR, APT and ${^1}H-{^1}H$ COSY, TOCSY, NOESY and <$^1H-{^{13}}C$ heteronuclear HSQC, HSQC-TOCSY, and HMBC. Here we point out the differential effect of substitution by a glucose residue at different positions on chemical shifts of anomeric as well as ring carbons together with the effect of the reducing end configuration for low DP oligosaccharides and diasteroisotopic effect for H-6 protons. From this study, structural $^{13}C$ specific spectral features can be identified as tools for structural analysis of isomaltooligosaccharides.

Enzymatic Properties of a Thermostable ${\alpha}$-Glucosidase from Acidothermophilic Crenarchaeon Sulfolobus tokodaii Strain 7

  • Park, Jung-Eun;Park, So Hae;Woo, Jung Yoon;Hwang, Hye Sun;Cha, Jaeho;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.56-63
    • /
    • 2013
  • We have characterized the putative ${\alpha}$-glucosidase gene (st2525) selected by total genome analysis from the acidothermophilic crenarchaeon Sulfolobus tokodaii strain 7. The ORF was cloned and expressed as a fusion protein in Escherichia coli, and recombinant ST2525 was purified by Ni-NTA affinity chromatography. Maximum activity was observed at $95^{\circ}C$ and pH 4.0, and the enzyme exhibited stability with half-lives of 40.1 min and 7.75 min at extremely high temperatures of $100^{\circ}C$ and $105^{\circ}C$, respectively. The enzyme retained at least 85% of its maximal activity in the pH range of 4.0-11.0. ST2525 exclusively hydrolyzed ${\alpha}$-1,4-glycosidic linkages of oligosaccharides in an exo-type manner, with highest catalytic efficiency toward maltotriose. The enzyme also displayed transglycosylation activity, converting maltose to isomaltose, panose, maltotriose, isomaltotriose, etc. From these results, ST2525 could be potentially useful for starch hydrolysis as well as novel synthesis of oligosaccharides in industry.

Structural Characterization of Physiologically Active Polysaccharides from Natural Products (Arabidopsis)

  • Shin, Kwang-Soon;Darvill, Alan G.
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.447-452
    • /
    • 2006
  • To determine the functions of specific cell wall polysaccharides, polysaccharides of three mutants, mur3-1, mur3-2, and mur3-3, obtained from Arabidopsis wild type, underwent structural characterization. Upon sequential separation of pectins (RG-I and RG-II) and cross-linking glycans (xyloglucan, XG), only XG was affected by the mud mutation. Wild-type XG contained a considerable amount of fucose, whereas the fucose level in mur3 XGs was less than 20% that of wild type. Further analysis of XGs by matrix-assisted laser-induced/ionization time-of-flight (MALDI-TOF) mass spectrometry indicated that mud lines considerably or completely lost the fucosylated XG oligosaccharides such as XXFG and XLFG and the double-galactosylated oligosaccharide XLLG $^1H$-NMR spectroscopic analyses of the XG oligosaccharides from mur3-3 plant revealed the absence of fucose and a galactose level in the galactosylated side chain that was reduced by 40% compared to that of Arabidopsis wild-type plant. In contrast, 85% less fucose and a slight loss of galactose were observed in the mur3-1 and mur3-2 lines which show normal growth habit. Of the three Arabidopsis mur3 lines studied here, mur3-3 is disrupted by a T-DNA insertion in the exon of MUR3 which encodes XG-specific galactosyltransferase, and exhibits slight dwarfism. These results indicated that the T-DNA insertion at the MUR3 locus did not induce the complete loss of galactose in XG, and that galactose, rather than fucose, in the XG side chains made a major contribution to overall wall strength.

Preparation and Characterization of Highly Pured Water-soluble Chitosan Oligosaccharides as Biomaterials (생체재료로서의 고순도 수용성 키토산 올리고당의 제조와 특성)

  • Park, Jun-Kyu;Choi, Changyong;Nam, Joung-Pyo;Park, Seong-Cheol;Park, YungHoon;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • To develop water-soluble chitosan as an effient gene delivery carrier, chitosan oligosaccharides (COSs) with various molecular weights (MW) were studied for gene transfection agents. MWs of COSs fractionated by ultrafiltration techniques were identified as narrow MW distributions with the average MW ranging from 1 to 10 kDa through gel permeation chromatography (GPC) measurement depending on the applied ultrafiltration membranes. Their structural characterizations were analyzed by FTIR spectrophotometer and $^1H$ NMR. The degree of deacetylation was determined by UV spectroscopy showing the degree of deacetylation above 90%. The relative cell viabilities were maintained over 100% (10 mg/mL), independent of the MW of the fractionated COSs. The fractionated COSs of 10 mg/mL concentration with narrow MW distributions showed non-cytotoxicity in Caco-2 cells.

Oligosaccharide Production by Leuconostoc lactis CCK940 Which Has Glucansucrase Activity (Leuconostoc lactis CCK940의 Glucansucrase 활성에 의한 올리고당 생산 최적화)

  • Lee, Sulhee;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • Glucansucrase is an enzyme classified as a glycoside hydrolase (GH) 70 family, which catalyzes the synthesis of glucooligosaccharides with a low molecular weight using sucrose as a donor of D-glucopyranose and maltose as a carbohydrate acceptor. In this study, glucansucrase-producing lactic acid bacteria strain was isolated from the fermented foods collected in traditional markets, and the optimum conditions for the oligosaccharide production were investigated. The strain CCK940 isolated from Chinese cabbage kimchi was selected as an oligosaccharide-producing strain due to its high glucansucrase activity, with 918.2 mU/mL, and identified as Leuconostoc lactis. The optimum conditions for the production of oligosaccharides using Leu. lactis CCK940 were to adjust the initial pH to 6.0, add 5% (w/v) sucrose and 10% (w/v) maltose as a donor and acceptor molecules, respectively, and feed 5% (w/v) sucrose at 4 and 8 h of cultivation. When Leu. lactis CCK940 was cultured for 12 h at optimum conditions, at least four oligosaccharides with a polymerization degree of 2-4 were produced.

Interaction between dietary digestible tryptophan and soy oligosaccharides in broiler chickens: effects on caecal skatole level and microflora

  • Jing Chen;Hansong Jing;Haiying Liu;Xin Zhu;Guiqin Yang
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.471-483
    • /
    • 2023
  • Objective: This study was conducted to evaluate the interactive effects of dietary digestible tryptophan (dTry) and soy oligosaccharides (SO) on growth performance, caecal skatole level, and microflora of broiler chickens aged from 14 to 42 days. Methods: Three hundred and sixty broiler chicks were allocated equally to 36 cages at 14-day-of-age according to body weight and gender. Using a 3×2 factorial arrangement, 3 dietary dTry levels (0.18%, 0.23%, and 0.28%) supplemented with 0 or 3.5 g/kg of SO were used to create 6 diets (treatments). Each diet was fed to six replicates of 10 birds (60 birds/treatment), growth performance was measured. Caecal content samples were collected at 42 days of age. Results: Results showed that significantly different dTry level×SO interactions were found for average daily gain (ADG), caecal levels of indole, propionic acid, and butyric acid, and microbial Shannon index (p<0.05). Birds fed diet containing 0.23% dTry level with SO supplementation had higher ADG and lower feed/gain ratio than those fed the other diets (p<0.05). Broilers fed diets containing 0.28% dTry increased their caecal levels of indole and skatole compared with those containing 0.18% or 0.23% dTry (p<0.01), regardless of SO addition. SO supplementation to diets decreased the caecal skatole level by 16.17% (p<0.05), and increased the relative frequency of Clostridium IV (p<0.05), regardless of dietary dTry level. Conclusion: These results indicated that diets containing 0.23% dTry with SO supplementation positively promoted ADG, and decreased caecal skatole levels of broiler chickens. The dietary dTry level, SO affected the caecal skatole level, however, there was no interaction between them.

Human Milk Oligosaccharide Profiles and the Secretor and Lewis Gene Status of Indonesian Lactating Mothers

  • Verawati Sudarma;Diana Sunardi;Nanis Sacharina Marzuki;Zakiudin Munasir;Asmarinah;Adi Hidayat;Badriul Hegar
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.5
    • /
    • pp.266-276
    • /
    • 2023
  • Purpose: Human milk oligosaccharides (HMOs) may be genetically determined based on the secretor and Lewis status of the mother. This study aims to determine the HMO profile and the secretor and Lewis gene status of Indonesian lactating mothers. Methods: Baseline data of 120 mother-infant pairs between 0-4 months post-partum obtained from a prospective longitudinal study was used. The concentrations of 2'-fucosyllactose (2'FL), lacto-N-fucopentaose I (LNFP I), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'SL), and 6'-sialyllactose (6'SL) were measured. Genetic analysis was performed for mothers using targeted next-generation sequencing and Sanger sequencing. Wild-type AA with the rs1047781 (A385T) polymorphism was categorized as secretor positive, while heterozygous mutant AT was classified as a weak secretor. The presence of rs28362459 (T59G) heterozygous mutant AC and rs3745635 (G508A) heterozygous mutant CT genes indicated a Lewis negative status, and the absence of these genes indicated a positive status. Subsequently, breast milk was classified into various groups, namely Group 1: Secretor+Lewis+ (Se+Le+), Group 2: Secretor-Lewis+ (Se-Le+), Group 3: Secretor+Lewis-(Se+Le-), and Group 4: Secretor-Lewis- (Se-Le-). Data were analyzed using the Mann-Whitney and Kruskal-Wallis rank tests, and a p-value of 0.05 indicated statistical significance. Results: A total of 58.3% and 41.7% of the samples had positive and weak secretor statuses, respectively. The proportion of those in Group 1 was 85%, while 15% were Group 3. The results showed that only 2'FL significantly differed according to the secretor status (p-value=0.018). Conclusion: All Indonesian lactating mothers in this study were secretor positive, and most of them had a Lewis-positive status.

Cloning and Biochemical Characterization of a Hyaluronate Lyase from Bacillus sp. CQMU-D

  • Lu Wang;Qianqian Liu;Xue Gong;Wenwen Jian;Yihong Cui;Qianying Jia;Jibei Zhang;Yi Zhang;Yanan Guo;He Lu;Zeng Tu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.235-241
    • /
    • 2023
  • Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40℃ and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.

Immuno-Enhancing Effect of Enzymatic Extract of Sargassum coreanum Using Crude Enzyme from Shewanella oneidensis PKA 1008 (Shewanella oneidensis PKA 1008 유래 조효소 처리에 의한 큰잎모자반(Sargassum coreanum) 추출 분해물의 면역증진 효과)

  • Park, Sun-Hee;Kim, Min-Ji;Kim, Go-Eun;Park, So-Yeong;Kim, Koth-Bong-Woo-Ri;Kim, Yeon-Ji;Cho, Young-Je;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.8
    • /
    • pp.919-928
    • /
    • 2017
  • The immuno-enhancing effects of alginate oligosaccharides from Sargassum coreanum were investigated. The alginate oligosaccharides were produced by an alginate-degrading enzyme from S. oneidensis PKA 1008. The degraded alginate oligosaccharides were visualized by thin-layer chromatography developed using a solvent system of 1-butanol/methanol/water, 4:1:2 (v/v/v). Alginate was degraded into dimmers at 60 h. As a result, the levels of Th1 cytokine [interferon $(IFN)-{\gamma}$ and interleukin (IL)-2] and Th2 cytokine (IL-6 and IL-10) increased with increasing incubation time compared to the control in vitro. Enzymatic extract treatment promoted proliferation of splenocytes at concentrations of 100 and 200 mg/kg at 24 h in vivo. Secretion of $IFN-{\gamma}$ and IL-2 significantly increased in a dose-dependent manner at 24 h as well as induced higher production of IgG2a in serum. Natural killer cell activity was measured and tended to increase. In addition, complete blood cell counts increased in a dose-dependent manner. These results indicate that alginate oligosaccharides produced by crude enzyme from S. oneidensis PKA 1008 may have significant immune activities.