DOI QR코드

DOI QR Code

Oligosaccharide Production by Leuconostoc lactis CCK940 Which Has Glucansucrase Activity

Leuconostoc lactis CCK940의 Glucansucrase 활성에 의한 올리고당 생산 최적화

  • Lee, Sulhee (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University)
  • 이설희 (가천대학교 식품생물공학과) ;
  • 박영서 (가천대학교 식품생물공학과)
  • Received : 2017.10.31
  • Accepted : 2017.11.14
  • Published : 2017.11.30

Abstract

Glucansucrase is an enzyme classified as a glycoside hydrolase (GH) 70 family, which catalyzes the synthesis of glucooligosaccharides with a low molecular weight using sucrose as a donor of D-glucopyranose and maltose as a carbohydrate acceptor. In this study, glucansucrase-producing lactic acid bacteria strain was isolated from the fermented foods collected in traditional markets, and the optimum conditions for the oligosaccharide production were investigated. The strain CCK940 isolated from Chinese cabbage kimchi was selected as an oligosaccharide-producing strain due to its high glucansucrase activity, with 918.2 mU/mL, and identified as Leuconostoc lactis. The optimum conditions for the production of oligosaccharides using Leu. lactis CCK940 were to adjust the initial pH to 6.0, add 5% (w/v) sucrose and 10% (w/v) maltose as a donor and acceptor molecules, respectively, and feed 5% (w/v) sucrose at 4 and 8 h of cultivation. When Leu. lactis CCK940 was cultured for 12 h at optimum conditions, at least four oligosaccharides with a polymerization degree of 2-4 were produced.

국내 재래시장에서 수집한 발효식품 등에서 우수한 glucansucrase 활성을 나타내는 유산균주를 분리한 후 이 균주를 이용한 올리고당 생성의 최적 조건을 조사하였다. 배추김치로부터 분리된 유산균주 CCK940은 glucansucrase 활성이 918.2 mU/mL로 가장 높아 본 올리고당 생산을 위한 균주로 선정하였고, Leu. lactis CCK940로 동정 및 명명되었다. 선정된 Leu. lactis CCK940는 배지의 pH를 6.0으로 조정하고 공여체인 sucrose와 수용체인 maltose의 초기 농도를 각각 5% (w/v)와 10% (w/v)로 첨가한 후 배양 4시간과 8시간째에 sucrose를 5% (w/v) 첨가하는 것이 최적인 것으로 확인되었다. 최적 조건에 12시간 배양 시 Leu. lactis CCK940는 중합도가 2-4인 올리고당을 최소 4종류 생성하였다. 본 균주는 수용체 분자로서 fructose와 melibiose를 사용할 수 없었다.

Keywords

Acknowledgement

Supported by : 농림축산식품부

References

  1. Bindels LB, Delzenne NM, Cani PD, Walter J. 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastoenterol. Hepatol. 12: 303-310. https://doi.org/10.1038/nrgastro.2015.47
  2. Costabile A, Fava F, Roytio H, Forssten SD, Olli K, Klievink J, Rowland IR, Ouwehand AC, Rastall RA, Gibson GR, Walton GE. 2012. Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br. J. Nutr. 108: 471-481. https://doi.org/10.1017/S0007114511005782
  3. Cote GL, Dunlap CA, Appell M, Momany FA. 2005. Alternansucrase acceptor reactions with D-tagatose and L-glucose. Carbohydr. Res. 340: 257-262. https://doi.org/10.1016/j.carres.2004.11.013
  4. Cote GL, Robyt JF. 1982. Acceptor reactions of alternansucrase from Leuconostoc mesenteroides NRRL B-1355. Carbohydr. Res. 111: 127-142. https://doi.org/10.1016/0008-6215(82)85013-1
  5. De Montalk GP, Remaud-Simeon M, Willemot RM, Sarcabal P, Planchot V, Monsan P. 2000. Amylosucrase from Neisseria polysaccharea: novel catalytic properties. FEBS Lett. 471: 219-223. https://doi.org/10.1016/S0014-5793(00)01406-X
  6. Heincke K, Demuth B, Jorderning HJ, Buchholz K. 1999. Kinetics of the dextransucrase accpetor reaction with maltose-experimetnatl results andmodeling. Enzyme Microb. Tech. 24: 523-534. https://doi.org/10.1016/S0141-0229(98)00150-1
  7. Heng NCK, Yeh CW, Malik A. 2017. Draft genome sequence of Weissella confusa MBF8-1, a glucansucrase- and bacteriocinproducing strain isolated from a homemade soy product. Genome Announc. 5: e01497-16.
  8. Iliev I, Vassileva T, Ignatova C, Ivanova I, T. Haertle T, Monsan P, Chobert JM. 2008. Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm 28. J. Appl. Microbiol. 104: 243-250.
  9. Johansson S, Diehl B, Christakopoulos P, Austin S, Vafiadi C. 2016. Oligosaccharide synthesis in fruit juice concentrates using a glucansucrase from Lactobacillus reuteri 180. Food Bioprod. Process. 98: 201-209. https://doi.org/10.1016/j.fbp.2016.01.013
  10. Joucla G, Pizzut S, Monsan P, Remaud-Simeon M. 2006. Construction of a fully active truncated alternansucrase partially deleted of its carboxy-terminal domain. FEBS Lett. 580: 763-768. https://doi.org/10.1016/j.febslet.2006.01.001
  11. Kang HK, Nguyen TTH, Jeong HN, Park ME, Kim D. 2014. Molecular cloning and characterization of a novel glucansucrase from Leuconostoc mesenteroides subsp. mesenteroides LM34. Biotechnol. Bioproc. E. 19: 605-612. https://doi.org/10.1007/s12257-014-0116-3
  12. Kang J, Kim YM, Kim NH, Kim DW, Nam SH, Kim D. 2009. Synthesis and characterization of hydroquinone fructoside using Leuconostoc mesenteroides levansucrase. Appl. Microbiol. Biotechnol. 83: 1009-1016. https://doi.org/10.1007/s00253-009-1936-5
  13. Kim D, Robyt JF. 1995. Production, selection, and characteristics of mutants of Leuconostoc mesenteroides B-742 constitutive for dextransucrases. Enzyme Microb. Tech. 17: 689-695. https://doi.org/10.1016/0141-0229(94)00021-I
  14. Kim YM, Yeon MJ, Choi NS, Chang YH, Jung MY, Song JJ, Kim JS. 2010. Purification ancharacterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol. Res. 165: 384-391. https://doi.org/10.1016/j.micres.2009.08.005
  15. Koepsell HJ, Tsuchiya HM, Hellman NN, Kazenko A, Hoffman CA, Sharpe ES, Jackson RW. 1953. Enzymatic synthesis of dextran; acceptor specificity and chain initiation. J. Biol. Chem. 200: 793-801.
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  17. Lee MS, Cho SK, Eom HJ, Kim SY, Kim TJ, Han NS. 2008. Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbial. Biotehc. 18: 1141-1145.
  18. Lee S, Hanh NTT, Cho JY, Kim JY, Moon YH, Yeom SC, Kim GJ, Kim D. 2016. Glucooligosaccharide production by Leuconostoc mesenteroides fermentation with efficient pH control, using a calcium hydroxide-sucrose solution. Biotechnol. Bioproc. E. 21: 39-45. https://doi.org/10.1007/s12257-015-0587-x
  19. Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L. 2013. Glucansucrases: three-dimensional structures, reactions, mechanism, alpha-glucan analysis and their implications in biotechnology and food applications. J. Biotechnol. 163: 250-272. https://doi.org/10.1016/j.jbiotec.2012.06.037
  20. Moon JS, Choi HS, Shin SY, Noh SJ, Jeon CO, Han NS. 2015. Genome sequence analysis of potential probiotics strain Leuconostoc lactis EFEL005 isolated from kimchi. J. Microbiol. 53: 337-342. https://doi.org/10.1007/s12275-015-5090-8
  21. Moon YH, Lee JH, Ahn JS, Nam SH, Oh DK, Park DH, Chung HJ, Kang S, Day DF, Kim D. 2006. Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. J. Agric. Food Chem. 54: 1230-1237. https://doi.org/10.1021/jf052359i
  22. Monsan PF, Ouarne F. 2009. Oligosaccharides derived from sucrose. In: Prebiotics and Probiotics Science and Technology. Rastall RA. (eds). Springer, NY, USA, pp 293-336.
  23. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ. 2005. Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 80: 845-860. https://doi.org/10.1002/jctb.1322
  24. Nelson N. 1944. A photometric adaptation of the somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.
  25. Patel S, Goyal A. 2011. Functional oligosaccharides: production, properties and applications. World J. Microbiol. Biotechnol. 27: 1119-1128. https://doi.org/10.1007/s11274-010-0558-5
  26. Putaala H, Makivuokko H, Tiihonen K, Rautonen N. 2011. Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells. Mol. Cell. Biochem. 357: 235-245. https://doi.org/10.1007/s11010-011-0894-2
  27. Remaud-Simeon M, Willemot RM, Sarcabal P, de Montalk GP, Monsan P. 2000. Glucansucrases: molecular engineering and oligosaccharide synthesis. J. Mol. Catal. B: Enzym. 10:117-128. https://doi.org/10.1016/S1381-1177(00)00119-3
  28. Robyt JF, Eklund SH. 1983. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohyd. Res. 121: 279-286. https://doi.org/10.1016/0008-6215(83)84024-5
  29. Seo ES, Kang J, Lee JH, Kim GE, Kim GJ, Kim D. 2009. Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase. Enzyme Microb. Tech. 45: 355-360. https://doi.org/10.1016/j.enzmictec.2009.07.011
  30. Seo ES, Nam SH, Kang HK, Cho JY, Lee HS, Ryu HW, Kim D. 2007. Synthesis of thermo- and acid-stable novel oligosaccharides by using dextransucrase with high concentration of sucrose. Enzyme Microb. Tech. 40: 1117-1123. https://doi.org/10.1016/j.enzmictec.2006.08.017
  31. Shukla R, Goyal A. 2014. Purified dextransucrase from Pediococcus pentosaceus CRAG3 as food additive. Indian J. Exp. Biol. 52: 1036-1044.
  32. Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
  33. Song L, Miao M, Jiang B, Xu T, Cui SW, Zhang T. 2016. Leuconostoc citreum SK24.002 glucansucrase: Biochemical characterisation and de novo synthesis of alpha-glucan. Int. J. Biol. Macromol. 91: 123-131. https://doi.org/10.1016/j.ijbiomac.2016.05.019
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  35. Tsuchiya HM, Koepsell HJ, Corman J, Bryant G, Bogard MO, Feger VH, Jackson RW. 1952. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J. Bacteriol. 64: 521-526.
  36. Veljkovic VB, Lazic ML, Rutic DJ, Jovanovic SM, Skala DU. 1992. Effects of aeroation on extracellular dextransucrase production by Leuconostoc mesenteroides. Enzyme Microb. Technol. 14: 665-668. https://doi.org/10.1016/0141-0229(92)90044-O
  37. Wenham DG, Davies RM, Cole JA. 1981. Insoluble glucan synthesis by mutansucrase as a determinant of the cariogenicity of Streptococcus mutans. J. Gen. Microbiol. 127: 407-415.
  38. Yamaner CI, Sezen IY, Tanriseven A. 2010. Selection of psychrotrophic Leuconostoc spp. from native fruits, and studies on their dextransucrases. Food Sci. Biotechnol. 19: 175-184. https://doi.org/10.1007/s10068-010-0024-z
  39. Yoon SH, Fulton DB, Robyt JF. 2010. Enzymatic synthesis of LDOPA ${\alpha}$-glycosides by reaction with sucrose catalyzed by four different glucansucrases from four strains of Leuconostoc mesenteroides. Carbohydr. Res. 345: 1730-1735. https://doi.org/10.1016/j.carres.2010.05.001

Cited by

  1. Optimization of Oligosaccharide Production from Leuconostoc lactis Using a Response Surface Methodology and the Immunostimulating Effects of These Oligosaccharides on Macrophage Cells vol.23, pp.9, 2017, https://doi.org/10.3390/molecules23092118
  2. In Vivo and In Vitro Study of Immunostimulation by Leuconostoc lactis-Produced Gluco-Oligosaccharides vol.24, pp.21, 2019, https://doi.org/10.3390/molecules24213994
  3. Structural Analysis of Gluco-Oligosaccharides Produced by Leuconostoc lactis and Their Prebiotic Effect vol.24, pp.21, 2017, https://doi.org/10.3390/molecules24213998
  4. Lactobacillus plantarum으로 발효한 뽕잎 추출물의 항당뇨 효과 vol.52, pp.2, 2020, https://doi.org/10.9721/kjfst.2020.52.2.191