Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10019

Enzymatic Properties of a Thermostable ${\alpha}$-Glucosidase from Acidothermophilic Crenarchaeon Sulfolobus tokodaii Strain 7  

Park, Jung-Eun (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University)
Park, So Hae (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University)
Woo, Jung Yoon (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University)
Hwang, Hye Sun (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University)
Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Lee, Heeseob (Department of Food Science and Nutrition, College of Human Ecology, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.1, 2013 , pp. 56-63 More about this Journal
Abstract
We have characterized the putative ${\alpha}$-glucosidase gene (st2525) selected by total genome analysis from the acidothermophilic crenarchaeon Sulfolobus tokodaii strain 7. The ORF was cloned and expressed as a fusion protein in Escherichia coli, and recombinant ST2525 was purified by Ni-NTA affinity chromatography. Maximum activity was observed at $95^{\circ}C$ and pH 4.0, and the enzyme exhibited stability with half-lives of 40.1 min and 7.75 min at extremely high temperatures of $100^{\circ}C$ and $105^{\circ}C$, respectively. The enzyme retained at least 85% of its maximal activity in the pH range of 4.0-11.0. ST2525 exclusively hydrolyzed ${\alpha}$-1,4-glycosidic linkages of oligosaccharides in an exo-type manner, with highest catalytic efficiency toward maltotriose. The enzyme also displayed transglycosylation activity, converting maltose to isomaltose, panose, maltotriose, isomaltotriose, etc. From these results, ST2525 could be potentially useful for starch hydrolysis as well as novel synthesis of oligosaccharides in industry.
Keywords
Sulfolobus tokodaii strain 7; ${\alpha}$-glucosidase; thermostability; transglycosylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cha, H. J., H. G. Yoon, Y. W. Kim, H. S. Lee, J. W. Kim, K. S. Kweon, et al. 1998. Molecular and enzymatic characterization of novel maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251-262.   DOI   ScienceOn
2 Angelov, A., M. Putyrski, and W. Liebl. 2006. Molecular and biochemical characterization of $\alpha$-glucosidase and $\alpha$-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 188: 7123-7131.   DOI   ScienceOn
3 Bill, R. M. and S. L. Flisch. 1996. Chemical and biological approaches to glycoprotein synthesis. Chem. Biol. 3: 145-149.   DOI   ScienceOn
4 Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
5 Di Lernia, I., A. Morana, A. Ottombrino, S. Fusco, M. Rossi, and M. de Rosa. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409-416.   DOI   ScienceOn
6 Costantino, H. R., S. H. Brown, and R. M. Kelly. 1990. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115oC. J. Bacteriol. 172: 3654-3660.
7 Crout, D. H. C., P. Critchley, D. Muller, M. Scigelova, S. Singh, and G. Vic. 1999. Application of glycosylases in the synthesis of complex carbohydrates, pp. 15-23. In H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (eds.). Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, UK.
8 Demirjian, D. C., F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151   DOI   ScienceOn
9 Galichet, A. and B. Belarbi. 1999. Cloning of an $\alpha$-glucosidase gene from Thermococcus hydrothermalis by functional complementation of a Saccharomyces cerevisiae mal11 mutant strain. FEBS Lett. 458: 188-192.   DOI   ScienceOn
10 Giannesi, G. C., M. L. T. M. Polizeli, H. F. Terenzi, and J. A. Jorge. 2006. A novel $\alpha$-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterisation of the enzyme. Proc. Biochem. 41: 1729-1735.   DOI   ScienceOn
11 Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34.   DOI   ScienceOn
12 Hostinova, E., A. Solovicova, and J. Gasperik. 2005. Cloning and expression of a gene for an $\alpha$-glucosidase from Saccharomycopsis fibuligera homologous to family GH31 of yeast glucoamylases. Appl. Microbiol. Biotechnol. 69: 51-56.   DOI
13 Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel $\alpha$-glucosidase from Asperillus nidurans with strong transglycosylation activity. Appl. Environ. Microbiol. 68: 1250-1256.   DOI   ScienceOn
14 Hough, W. D. and M. J. Danson. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39-46.   DOI   ScienceOn
15 Kim, I. C., J. H. Cha, J. R. Kim, S. Y. Jang, B. C. Seo, T. K. Cheong, et al. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108-22114.
16 Hung, V. S., Y. Hatada, S. Goda, J. Lu, Y. Hidaka, Z. Li, et al. 2005. $\alpha$-Glucosidase from a strain of deep-sea Geobacillus: A potential enzyme for the biosynthesis of complex carbohydrates. Appl. Microbiol. Biotechnol. 68: 757-765.   DOI   ScienceOn
17 Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, et al. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 8: 123-140.   DOI   ScienceOn
18 Kelly, C. T., M. Giblin, and W. M. Fogarty. 1986. Resolution, purification, and characterization of two extracellular glucohydrolases, $\alpha$-glucosidase and maltase of Bacillus licheniformis. Can. J. Microbiol. 32: 342-347.   DOI
19 Kim, Y. W., J. H. Choi, J. W. Kim, C. Park, J. W. Kim, H. Cha, et al. 2003. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874.   DOI   ScienceOn
20 Kinsella, B. T., A. Larkin, M. Bolton, and B. A. Cantwell. 1991. Molecular cloning and characterization of a Candida tsukubaensis $\alpha$-glucosidase gene in the yeast Saccharomyces cerevisiae. Curr. Genet. 20: 45-52.   DOI
21 Lee, S. S., S. He, and S. G. Withers. 2001. Identification of the catalytic nucleophile of the Family 31 $\alpha$-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosyl-enzyme intermediate. Biochem. J. 359: 381-386.
22 Kobayash, I., M. Tokuda, T. Konda, H. Nakano, and S. Kitahata. 2003. Purification and characterization of a new type of $\alpha$- glucosidase from Paecilomyces lilacinus that has transglycosylation activity to produce $\alpha$-1,3 and $\alpha$-1,2 linked oligosaccharides. Biosci. Biotechnol. Biochem. 67: 29-35.   DOI   ScienceOn
23 Kuriki, T. and T. Imanaka. 1989. Characterization of thermostable pullulanase from Bacillus stearothermophilus and the nucleotide sequence of the gene. J. Gen. Microbiol. 135: 1521-1528.
24 Marín, D., D. Linde, and M. F. Lobato. 2006. Purification and biochemical characterization of an α-glucosidase from Xanthophyllomyces dendrorhus. Yeast 23: 117-125.   DOI   ScienceOn
25 Kurimoto, M., T. Nishimoto, T. Nakada, H. Chaen, S. Fukuda, and Y. Tsujisaka. 1997. Synthesis by an $\alpha$-glucosidase of glycosyltrehaloses with an isomaltosyl residue. Biosci. Biotechnol. Biochem. 61: 699-703.   DOI   ScienceOn
26 Linke, B., A. Rüdiger, G. Wittenberg, P. L. Jorgensen, and G. Antranikian. 1992. Production of heat-stable pullulanase and $\alpha$- glucosidase from the extremely thermophilic archaeon Pyrococcus woesei. DECHEMA Biotechnol. Conf. 5: 161-163.
27 Mala, S., H. Dvorakova, R. Hrabal, and B. Kralova. 1999. Towards regioselective synthesis of oligosaccharides by use of $\alpha$-glucosidases with different substrate specificity. Carbohydr. Res. 322: 209-218.   DOI   ScienceOn
28 Nashiru, O., S. H. Koh, S. Y. Lee, and D. S. Lee. 2001. Novel $\alpha$-glucosidase from extreme thermophile Thermus caldophilus GK24. Biochem. Mol. Biol. 34: 347-354.
29 Nakao, M., T. Nakayama, M. Harada, A. Kakudo, H. Ikemoto, S. Kobayashi, and Y. Shibano. 1994. Purification and characterization of a Bacillus sp. SAM1606 thermostable alpha-glucosidase with transglycosylation activity. Appl. Microbiol. Biotechnol. 41: 337-343.   DOI   ScienceOn
30 Oda, Y., H. Iwamoto, K. Hiromi, and K. Tonomura. 1993. Purification and characterization of $\alpha$-glucosidase from Torulaspora pretoriensis YK-1. Biosci. Biotechnol. Biochem. 57: 1902- 1905.
31 Okuyama, M., Y. Tanimoto, T. Ito, A. Anzai, H. Mori, A. Kimura, et al. 2005. Purification and characterization of the hyperglycosylated extracellular $\alpha$-glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol. 37: 472-480.   DOI   ScienceOn
32 Piller, K., R. M. Daniel, and H. H. Petach. 1996. Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: Enzyme activity at $130{^{\circ}C}$. Biochim. Biophys. Acta 1292: 197-205   DOI   ScienceOn
33 Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, et al. 2004. Purification and chracterization of Acremonium implicatum $\alpha$-glucosidase having regioselectivity for $\alpha$-1,3-glucosidic linkage. Biochim. Biophys. Acta 1700: 189-198.   DOI   ScienceOn
34 Rolfsmeier, M. and P. Blum. 1995. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J. Bacteriol. 177: 482-485.
35 Rolfsmeier, M., C. Haseltine, E. Bini, A. Clark, and P. Blum. 1998. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 180: 1287-1295.
36 Suzuki, T., T. Iwasaki, T. Uzawa, K. Hara, N. Nemoto, T. Kon, et al. 2002. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6: 39-44.   DOI
37 Tanaka, Y., T. Aki, Y. Hidaka, Y. Furuya, S. Kawamoto, S. Shigeta, et al. 2002. Purification and characterization of a novel fungal $\alpha$-glucosidase from Mortierella alliacea with high starchhydrolytic activity. Biosci. Biotechnol. Biochem. 66: 2415- 2423.   DOI   ScienceOn
38 Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329-418.   DOI   ScienceOn
39 Watanabe, K., K. Miyake, and Y. Suzuki. 2001. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC 7064 oligo-1,6-glucosidase. Biosci. Biotechnol. Biochem. 65: 2058-2064.   DOI   ScienceOn