• 제목/요약/키워드: Oligomerization

검색결과 97건 처리시간 0.039초

NMR structural studies on Human CD99 Type I

  • Kim, Hai-Young;Kim, Young-Mee;Joon Shin;Shin, Young-Kee;Park, Seong-Hoe;Lee, Weontae
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.69-69
    • /
    • 2003
  • Human CD99 is a ubiquitous 32-kDa transmembrane protein encoded by the mic2 gene. The major cellular functions of CD99 protein are related to homotypic cell adhension, apoptosis, vesicular protein transport, and differentiation of thymocytes or T cells. Recently it has been reported that expression of a splice variant of CD99 transmembrane protein (Type I and Type II) increases invasive ability of human breast cancer cells. To understand structural basis for cellular functions of CD99 (Type I), we have initiated studies on hCD99$^{TMcytoI}$ and hCD99$^{cytoI}$ using circular dichroism (CD) and multi-dimensional NMR spectroscopy. CD spectrum of hCD99$^{TMcytoI}$ in the presence of 200mM DPC and CHAPS displayed an existence $\alpha$-helical conformation. The solution structure of hCD99$^{cytoI}$ determined by NMR is composed of one N-terminal $\alpha$-helix, $\alpha$A, two C-terminal short $\alpha$-helix segments, $\alpha$B and $\alpha$C. While $\alpha$A and $\alpha$B are connected by the long flexible loop, $\alpha$B and $\alpha$C connected by type III$\beta$-turn. Although it has been rarely figured out the correlation between structure and functional mechanism of hCD99$^{TMcytoI}$ and hCD99$^{cytoI}$, there is possibility of dimerization or oligomerization. In addition, the feasible mechanism of hCD99$^{cytoI}$ is that it could have intramolecular interaction between the N- and C- terminal domain through large flexible AB loop.

  • PDF

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • 청정기술
    • /
    • 제22권4호
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

A Helix-induced Oligomeric Transition of Gaegurin 4, an Antimicrobial Peptide Isolated from a Korean Frog

  • Eun, Su-Yong;Jang, Hae-Kyung;Han, Seong-Kyu;Ryu, Pan-Dong;Lee, Byeong-Jae;Han, Kyou-Hoon;Kim, Soon-Jong
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.229-236
    • /
    • 2006
  • Gaegurin 4 (GGN4), a novel peptide isolated from the skin of a Korean frog, Rana rugosa, has broad spectrum antimicrobial activity. A number of amphipathic peptides closely related to GGN4 undergo a coil to helix transition with concomitant oligomerization in lipid membranes or membrane-mimicking environments. Despite intensive study of their secondary structures, the oligomeric states of the peptides before and after the transition are not well understood. To clarify the structural basis of its antibiotic action, we used analytical ultracentrifugation to define the aggregation state of GGN4 in water, ethyl alcohol, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The maximum size of GGN4 in 15% HFIP corresponded to a decamer, whereas it was monomeric in buffer. The oligomeric transition is accompanied by a cooperative 9 nm blue-shift of maximum fluorescence emission and a large secondary structure change from an almost random coil to an ${\alpha}$-helical structure. GGN4 induces pores in lipid membranes and, using electrophysiological methods, we estimated the diameter of the pores to be exceed $7.3{\AA}$, which suggests that the minimal oligomer structure responsible is a pentamer.

박테리아의 히스톤 유사 단백질에 의한 유전자 발현 조절 (Regulation of gene expression by histone-like proteins in bacteria)

  • 박신애;이정신
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 원핵 세포는 핵양체 결합 단백질(NAP)로 알려진 다양한 히스톤 유사 단백질을 가지고 있다. 이들은 DNA의 AT-rich 서열에 결합하여, DNA 자체를 감싸거나, 구부리거나, 떨어져 있는 DNA 가닥을 연결시키는 다리 역할을 하여, 결국에는 원핵 생물의 유전자 발현을 조절한다. NAP는 특히 전사의 억제 기능을 가지고 있기 때문에, 유전자 발현 억제에 있어서 이들의 역할과, 구체적인 메커니즘을 밝히는 것을 매우 중요한 일이다. 본 논문에서는 잘 알려져 있는 NAP인 H-NS와 HU에 대하여 정리하였고, 특히 E. coli와 Salmonella Typhimurium에서 이들의 유전자 발현에 대한 기능을 요약하였다. H-NS는 이들의 올리고머화와 필라멘트 구조 형성을 통하여 Salmonella와 같은 사람에 감염하는 병원성 세균의 독성유전자 발현을 억제할 수 있고, 이런 기능을 수행하였을 때 다른 NAP와 함께 작용할 수 있다. 최근에 H-NS는 사람에게 typhoid fever와 systemic disease를 발생시키는 독성물질인, typhoid toxin의 발현 또한 조절할 수 있음이 밝혀졌다. Salmonella에서 HU 또한 독성 유전자뿐만 아니라, 이들의 생리적 기능에 중요한 유전자들의 발현을 조절할 수 있다. 따라서, H-NS와 HU와 같은 NAP들이 원핵 생물의 독성 유전자 발현의 분자적인 메커니즘을 밝히는데 중요한 요소임을 제시한다.

Oligomeric Structure of the ATP-dependent Protease La (Lon) of Escherichia coli

  • Park, Seong-Cheol;Jia, Baolei;Yang, Jae-Kyung;Le Van, Duyet;Shao, Yong Gi;Han, Sang Woo;Jeon, Young-Joo;Chung, Chin Ha;Cheong, Gang-Won
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.129-134
    • /
    • 2006
  • Lon, also known as protease La, belongs to a class of ATP-dependent serine protease. It plays an essential role in degradation of abnormal proteins and of certain short-lived regulatory proteins, and is thought to possess a Ser-Lys catalytic dyad. To examine the structural organization of Lon, we performed an electron microscope analysis. The averaged images of Lon with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity. The side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since a Lon subunit possesses two large regions containing nucleotide binding and proteolytic domains, each layer of the Lon hexamer appears to consist of the side projections of one of the major domains arranged in a ring. Lon showed a strong tendency to form hexamers in the presence of $Mg^{2+}$, but dissociated into monomers and/or dimers in its absence. Moreover, $Mg^{2+}$-dependent hexamer formation was independent of ATP. These results indicate that Lon has a hexameric ring-shaped structure with a central cavity, and that the establishment of this configuration requires $Mg^{2+}$, but not ATP.

Nucleotide-binding oligomerization domain 1 is dispensable for host immune responses against pulmonary infection of Acinetobacter baumannii in mice

  • Kang, Min-Jung;Choi, Jin-A;Choi, Joo-Hee;Jang, Ah-Ra;Park, Ji-Yeon;Ahn, Jae-Hun;Lee, Tae-Sung;Kim, Dong-Yeon;Park, Jong-Hwan
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.295-301
    • /
    • 2018
  • Nucleotide-binding domain 1 (Nod1) is a cytosolic receptor that is responsible for the recognition of a bacterial peptidoglycan motif containing meso-diaminophimelic acid. In this study, we sought to identify the role of Nod1 in host defense in vivo against pulmonary infection by multidrug resistant Acinetobacter baumannii. Wildtype (WT) and Nod1-deficient mice were intranasally infected with $3{\times}10^7CFU$ of A. baumannii and sacrificed at 1 and 3 days post-infection (dpi). Bacterial CFUs, cytokines production, histopathology, and mouse ${\beta}$-defensins (mBD) in the lungs of infected mice were evaluated. The production of cytokines in response to A. baumannii was also measured in WT and Nod1-deficient macrophages. The bacterial clearance in the lungs was not affected by Nod1 deficiency. Levels of IL-6, $TNF-{\alpha}$, and $IL-1{\beta}$ in the lung homogenates were comparable at days 1 and 3 between WT and Nod1-deficient mice, except the $TNF-{\alpha}$ level at day 3, which was higher in Nod1-deficient mice. There was no significant difference in lung pathology and expression of mBDs (mBD1, 2, 3, and 4) between WT and Nod1-deficient mice infected with A. baumannii. The production of IL-6, $TNF-{\alpha}$, and NO by macrophages in response to A. baumannii was also comparable in WT and Nod1-deficient mice. Our results indicated that Nod1 does not play an important role in host immune responses against A. baumannii infection.

NOD2 signaling pathway is involved in fibronectin fragment-induced pro-catabolic factor expressions in human articular chondrocytes

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.373-378
    • /
    • 2019
  • The nucleotide-binding and oligomerization domain (NOD) is an innate pattern recognition receptor that recognizes pathogen- and damage-associated molecular patterns. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) is a matrix degradation product found in the synovial fluids of patients with osteoarthritis (OA). We investigated whether NOD2 was involved in 29-kDa FN-f-induced pro-catabolic gene expression in human chondrocytes. The expression of mRNA and protein was measured using quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot analysis. Small interfering RNAs were used for knockdown of NOD2 and toll-like receptor 2 (TLR-2). An immunoprecipitation assay was performed to examine protein interactions. The NOD2 levels in human OA cartilage were much higher than in normal cartilage. NOD1 and NOD2 expression, as well as pro-inflammatory cytokines, including interleukin-1beta (IL-$1{\beta}$) and tumor necrosis factor-alpha (TNF-${\alpha}$), were upregulated by 29-kDa FN-f in human chondrocytes. NOD2 silencing showed that NOD2 was involved in the 29-kDa FN-f-induced expression of TLR-2. Expressions of IL-6, IL-8, matrix metalloproteinase (MMP)-1, -3, and -13 were also suppressed by TLR-2 knockdown. Furthermore, NOD2 and TLR-2 knockdown data demonstrated that both NOD2 and TLR-2 modulated the expressions of their adaptors, receptorinteracting protein 2 (RIP2) and myeloid differentiation 88, in 29-kDa FN-f-treated chondrocytes. 29-kDa FN-f enhanced the interaction of NOD2, RIP2 and transforming growth factor beta-activated kinase 1 (TAK1), an indispensable signaling intermediate in the TLR-2 signaling pathway, and activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$), subsequently leading to increased expressions of pro-inflammatory cytokines and cartilage-degrading enzymes. These results demonstrate that 29-kDa FN-f modulated pro-catabolic responses via cross-regulation of NOD2 and TLR-2 signaling pathways.

Evaluation of immune responses in dairy cows immunized with an inactivated vaccine for bovine respiratory disease

  • Aganja, Ram Prasad;Seo, Kangseok;Ha, Seungmin;Yi, Young-Joo;Lee, Sang-Myeong
    • 농업과학연구
    • /
    • 제48권2호
    • /
    • pp.251-264
    • /
    • 2021
  • Bovine respiratory syncytial virus (BRSV) and bovine viral diarrhea virus (BVDV) are the main viral contributors to bovine respiratory disease (BRD) with high mortality and morbidity. BRD control measures include vaccination that modulates immunological profiles reflected in blood cells, serum, and body secretions, such as milk. This study evaluated the immune responses to an inactivated BRD vaccine in lactating cows reared in a natural environment on a dairy farm. The cows were intramuscularly inoculated with the vaccine, and serum, blood, and milk were collected pre-and post-vaccination. Our study revealed a prominent increase in BRSV-specific antibodies both in serum and milk, while the change in BVDV-specific antibodies was insignificant. Serum interleukin (IL)-1β and IL-6 levels significantly decreased, but this change was not reflected in milk. Evaluation of pattern recognition receptors (PRRs) via RT-qPCR revealed downregulation of nucleotide-binding oligomerization domain 2 (NOD2). The concentrations of BRSV antibodies, BVDV antibodies, IL-2, and IL-17A in serum and milk were strongly correlated, implying a concurrent influence on both body fluids. Thus, immunological factors modulated as a result of vaccination generally measured in serum were reflected in milk, demonstrating the suitability of milk evaluation as an alternative approach for immunological observations. Furthermore, the correlation between BRSV antibodies and NOD2 and that between BVDV antibodies and toll-like receptor (TLR) 2, TLR3, TLR4, and TLR5 imply the possible role of PRRs for the assessment of the immune response developed in immunized cows reared on the farm.

The effect of rosehip extract on TNF-α, IL-1β, and IL-8 production in THP-1-derived macrophages infected with Aggregatibacter actinomycetemcomitans

  • Song, Yuri;Kim, Si young;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제47권1호
    • /
    • pp.1-8
    • /
    • 2022
  • Inflammation is a protective mechanism against pathogens, but if maintained continuously, it destroys tissue structures. Aggregatibacter actinomycetemcomitans is a gram-negative, facultative anaerobic bacterium often found in severe periodontitis. A. actinomycetemcomitans invades epithelial cells and triggers inflammatory response in the immune cells. In this study, we investigated the effect of water-soluble rosehip extract on A. actinomycetemcomitans-induced inflammatory responses. A human monocytic cell line (THP-1) was differentiated to macrophages by phorbol 12-mystristate 13-acetate treatment. The cytotoxic effect of extract was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effects of extract on bacterial growth were examined by measuring the optical densities using a spectrophotometer. THP-1-derived macrophages were infected A. actinomycetemcomitans after extract treatment, and culture supernatants were analyzed for cytokine production using enzyme-linked immunosorbent assay. Protein expression was measured by western blotting. Extract was not toxic to THP-1-derived macrophages. A. actinomycetemcomitans growth was inhibited by 1% extract. The extract suppressed A. actinomycetemcomitans-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-8 production. It also decreased mitogen-activated protein kinase (MAP kinase) and nuclear factor-κB (NF-κB) phosphorylation. Moreover, the extract inhibited the expression of inflammasome components, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3, Absent in Melanoma 2, and apoptosis associated speck-like protein containing a CARD. And cysteine-aspartic proteases-1 and IL-1β expression were decreased by the extract. In summary, extract suppressed A. actinomycetemcomitans growth and decreased inflammatory cytokine production by inhibiting activation of MAP kinase, NF-κB, and inflammasome signaling. Rosehip extract could be effective in the treatment of periodontal inflammation induced by A. actinomycetemcomitans infection.

Anti-inflammatory effects of N-cyclooctyl-5-methylthiazol-2-amine hydrobromide on lipopolysaccharide-induced inflammatory response through attenuation of NLRP3 activation in microglial cells

  • Kim, Eun-A;Hwang, Kyouk;Kim, Ji-Eun;Ahn, Jee-Yin;Choi, Soo Young;Yang, Seung-Ju;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.557-562
    • /
    • 2021
  • Microglial activation is closely associated with neuroinflammatory pathologies. The nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasomes are highly organized intracellular sensors of neuronal alarm signaling. NLRP3 inflammasomes activate nuclear factor kappa-B (NF-κB) and reactive oxygen species (ROS), which induce inflammatory responses. Moreover, NLRP3 dysfunction is a common feature of chronic inflammatory diseases. The present study investigated the effect of a novel thiazol derivative, N-cyclooctyl-5-methylthiazol-2-amine hydrobromide (KHG26700), on inflammatory responses in lipopolysaccharide (LPS)-treated BV-2 microglial cells. KHG26700 significantly attenuated the expression of several pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in these cells, as well as the LPS-induced increases in NLRP3, NF-κB, and phospho-IkBα levels. KHG26700 also suppressed the LPS-induced increases in protein levels of autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 (LC3), and beclin-1, as well as downregulating the LPS-enhanced levels of ROS, lipid peroxidation, and nitric oxide. These results suggest that the anti-inflammatory effects of KHG26700 may be due, at least in part, to the regulation of the NLRP3-mediated signaling pathway during microglial activation.