Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.11.082

Anti-inflammatory effects of N-cyclooctyl-5-methylthiazol-2-amine hydrobromide on lipopolysaccharide-induced inflammatory response through attenuation of NLRP3 activation in microglial cells  

Kim, Eun-A (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Hwang, Kyouk (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Kim, Ji-Eun (Department of Biomedical Laboratory Science, Konyang University)
Ahn, Jee-Yin (Department of Molecular Cell Biology and Single Cell Network Research Center, Sungkyunkwan University School of Medicine)
Choi, Soo Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University)
Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University)
Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Publication Information
BMB Reports / v.54, no.11, 2021 , pp. 557-562 More about this Journal
Abstract
Microglial activation is closely associated with neuroinflammatory pathologies. The nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasomes are highly organized intracellular sensors of neuronal alarm signaling. NLRP3 inflammasomes activate nuclear factor kappa-B (NF-κB) and reactive oxygen species (ROS), which induce inflammatory responses. Moreover, NLRP3 dysfunction is a common feature of chronic inflammatory diseases. The present study investigated the effect of a novel thiazol derivative, N-cyclooctyl-5-methylthiazol-2-amine hydrobromide (KHG26700), on inflammatory responses in lipopolysaccharide (LPS)-treated BV-2 microglial cells. KHG26700 significantly attenuated the expression of several pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in these cells, as well as the LPS-induced increases in NLRP3, NF-κB, and phospho-IkBα levels. KHG26700 also suppressed the LPS-induced increases in protein levels of autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 (LC3), and beclin-1, as well as downregulating the LPS-enhanced levels of ROS, lipid peroxidation, and nitric oxide. These results suggest that the anti-inflammatory effects of KHG26700 may be due, at least in part, to the regulation of the NLRP3-mediated signaling pathway during microglial activation.
Keywords
Inflammasome; Microglia; N-cyclooctyl-5-methylthiazol-2-amine hydrobromide; NLRP3; Pro-inflammatory cytokines;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee CM, Lee DS, Jung WK et al (2016) Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPSstimulated BV2 cells. Int Mol Med 38, 912-918   DOI
2 Possel H, Noack H, Putzke J et al (2000) Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32, 51-59   DOI
3 Chew LJ, Takanohashi A and Bell M (2006) Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 12, 105-112   DOI
4 Ha SC, Han AR, Kim DW et al (2013) Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain. BMB Rep 46, 370-375   DOI
5 Kim EA, Han AR, Choi J et al (2014) Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int Immunopharmacol 22, 73-83   DOI
6 Chen C, Wei YZ, He XM et al (2019) Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front Immunol 10, 936   DOI
7 Yang F, Wang Z, Wei X et al (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34, 660-667   DOI
8 Budai MM, Varga A, Milesz S et al (2013) Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol 56, 471-479   DOI
9 Jeng KCG, Hou RCW, Wang JC et al (2005) Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol Lett 97, 101-106   DOI
10 Fu YY, Zhang F, Zhang L et al (2014) Mangiferin regulates interleukin-6 and cystathionine-b-synthase in lipopolysaccharide-induced brain injury. Cell Mol Neurobiol 34, 651-657   DOI
11 Kim EA, Na JM, Kim J et al (2017) Neuroprotective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on brain ischaemia/reperfusion injury. J Neuroimmune Pharmacol 12, 447-461   DOI
12 Kim EA, Kim H, Ahn JY et al (2010) Suppression of lipopolysaccharide-induced microglial activation by a benzothiazole derivative. Mol Cells 30, 51-57   DOI
13 Yang JW, Yang SJ, Na JM et al (2018) 3-(Naphthalen-2-yl (propoxy)methyl)azetidine hydrochloride attenuates NLRP3 inflammasome-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglial cells. Biochem Biophys Res Commun 495, 151-156   DOI
14 Ha JS, Choi HR, Kim IS et al (2021) Hypoxia-induced S100A8 expression activates microglial inflammation and promotes neuronal apoptosis. Int J Mol Sci 22, 1205   DOI
15 Kim J, Kim SM, Na JM et al (2016) Protective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on hypoxia-induced toxicity by suppressing microglial activation in BV-2 cells. BMB Rep 49, 687-692   DOI
16 Kim J, Kwak HJ, Cha JY et al (2014) Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem 289, 23246-23255   DOI
17 Levine B, Mizushima N and Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469, 323-335   DOI
18 Yin WY, Ye Q and Huang HJ (2016) Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem 419, 53-64   DOI
19 inarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27, 519-550   DOI
20 De Nardo D and Latz E (2011) NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32, 373-379   DOI
21 Sorbara MT and Girardin SE (2011) Mitochondrial ROS fuel the inflammasome. Cell Res 21, 558-560   DOI
22 Han AR, Yang JW, Na JM et al (2019) Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells. BMB Rep 52, 439-444   DOI
23 Urabe T, Yamasaki Y, Hattori N et al (2000) Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in the gerbil brain. Neuroscience 100, 241-250   DOI
24 Yang SJ, Han AR, Choi HR et al (2020) N-Adamantyl4-methylthiazol-2-amine suppresses glutamate-induced auto-phagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons. BMB Rep 53, 527-532   DOI
25 Kim H, Choi J, Ryu J et al (2009) Activation of autophagy during glutamate-induced HT22 cell death. Biochem Biophys Res Commun 388, 339-344   DOI
26 Murad F (1994) The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. Recent Prog Horm Res 49, 239-248
27 Kim SJ, Cha JY, Kang HS et al (2016) Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep 49, 276-281   DOI
28 Lee KJ, Kim YK, Krupa M et al (2016) Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages. BMB Rep 49, 185-190   DOI
29 Kim EA, Choi J, Han AR et al (2013) Anti-oxidative and anti-inflammatory effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on glutamate-induced neurotoxicity in rat brain. Neurotoxicology 38, 106-114   DOI
30 Yang SJ, Lee WJ, Kim EA et al (2014) Effects of N-adamantyl-4-methylthiazol-2-amine on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Eur J Pharmacol 736, 26-34   DOI
31 Cho CH, Kim EA, Kim J et al (2016) N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid β-induced neuronal oxidative damage in cortical neurons. Free Radic Res 50, 678-690   DOI
32 Kim H, Youn GS, An SY et al (2016) 2,3-Dimethoxy-2'-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells. BMB Rep 49, 57-62   DOI