• Title/Summary/Keyword: Olefins

Search Result 139, Processing Time 0.023 seconds

Comparison of Cuticular Hydrocarbons of Different Developmental Stages of the Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae) (꽃매미(Lycorma delicatula)의 발육단계별 표피탄화수소 비교)

  • Cho, Sun-Ran;Lee, Jeong-Eun;Jeong, Jin-Won;Yang, Jeong-Oh;Yoon, Chang-Mann;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.185-194
    • /
    • 2011
  • Aliphatic cuticular hydrocarbons (CHCs) of different developmental stages of the spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) were analyzed using GC and GC-MS. The numbers of carbons in the major CHCs of each developmental stage 32, 33, 28, 38, 37 in the egg, 1st, 2nd, 3rd, and 4th instar nymphal stages, and adults, respectively. The cuticle of Lycorma delicatula contains mainly methyl-branched 9-methylheptacosane (15.11%) in the egg stage, and a high proportion of n-heptacosane in nymphal stages (15.75, 22.42, 25.04, and 23.11 % in the 1st, 2nd, 3rd and 4th instars, respectively). In contrast, male and female adults had high proportions of n-nonacosane (13.42 and 16.55%). The chemical constituents of CHCs were classified into five groups (n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins) and group profiles of each developmental stage were compared. Egg surface was composed mainly monomethylalkanes (45.39%), a saturated hydrocarbon. Nymph CHCs consisted primarily of n-alkanes (37.63 to 46.12%). There was a difference between adult male and female CHCs. However, both contained n-alkanes and monomethylalkanes. CHCs with trimethyl or double bonded structure were rare in all stages.

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction (키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응)

  • Yoon, Young-Chan;Song, Kang;Lim, Jeong-Hyeon;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.305-311
    • /
    • 2021
  • Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction (DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과)

  • Song, Kang;Yoon, Young-Chan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.

A Facile Synthesis of SAPO-34 Molecular Sieves with Microwave Irradiation in Wide Reaction Conditions

  • Jun, Jong-Won;Lee, Ji-Sun;Seok, Hwi-Young;Chang, Jong-San;Hwang, Jin-Soo;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1957-1964
    • /
    • 2011
  • Various reaction conditions uding temperature, time and type and concentration of templates have been changed in order to facilely synthesize, especially with microwave (MW) heating, SAPO-34 molecular sieves. SAPO-34 molecular sieve can be synthesized rapidly with microwave irradiation from a gel containing tetraethylammonium hydroxide (TEAOH) as a template. However, other several templating molecules lead to SAPO-5 molecular sieve under microwave irradiation even though SAPO-34 is obtained by conventional electric synthesis from the same reactant gels. Moreover, SAPO-34 can be obtained more easily by increasing the TEAOH or silica concentration or by increasing the reaction temperature. SAPO-34 can be obtained within 5 min in a selected condition (high temperature of 210 $^{\circ}C$) with microwave heating, which may lead to a continuous production of the important material. SAPO-34 synthesized by microwave irradiation is homogeneous and small in size and shows acidity and a stable performance in the dehydration of methanol and 2-butanol to olefins, suggesting potential applications in acid catalysis.

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

Microwave Assisted Reaction of Condensed Thiophenes With Electron Poor Olefins

  • Al-zaydi, Khadijah M.;Elnagdi , Mohamed H.
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.591-596
    • /
    • 2003
  • Aminothienopyridazines 1a, b and aminothienocoumarin 2 condensed with DMFDMA to yield amidines 3a, b and 4. These compounds reacted with N-phenylmaleimide to yield 9 and 10. On the other hand reacting 3a, b, 4, 18, 19 and 20 with maleic anhydride afforded only the formylated derivatives 5a, b, 6, 21, 22 and 23 respectively. The reaction of 3a, b with diethyl fumarate afforded 11, formed most likely via hydrolysis of the amidine 14 during working up the reaction mixture. Irradiation of N-phenylmaleimide in microwave oven afforded [2+2] and [2+2+2] cycloaddition product.

Gasoline Desulfurization by Catalytic Alkylation over Methanesulfonic Acid

  • Wu, Xiaolin;Bai, Yunpeng;Tian, Ying;Meng, Xuan;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3055-3058
    • /
    • 2013
  • Methanesulfonic acid (MSA) was used as catalyst to remove trace organic sulfur (thiophene) from Fluid Catalytic Cracking gasoline (FCC) via alkylation with olefins. The reactions were conducted in Erlenmeyer flask equipped with a water-bath under atmospheric pressure. The influence of the temperature, the reaction time, and the mass ration of MSA were investigated. After a 60 min reaction time at 343 K, the thiophene conversion of 98.7% was obtained with a mass ration of MSA to oil of 10%. The catalyst was reused without a reactivation treatment, and the thiophene conversion reached 92.9% at the third time. The method represents an environmentally benign route to desulfur, because MSA could easily be separated from the reaction mixture via decantation and it could be reused.

1,2-Ferrocenedilazaphosphinines 3:A New Class fo Planar Chiral Ligands for Cu-Catalyzed Cyclopropanation

  • Paek, Seung-Hwan;Co, Thanh Thien;Lee, Dong-Ho;Park, Yu-Chul;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1702-1708
    • /
    • 2002
  • The synthesis and catalytic application of a new class of a new class of planar chiral ferrocenes, 1,2-ferrocenediylazaphosphinines (1 and 2) are described. They are powerful ligands for the copper(I)-catalyzed asymmetric cyclopropanation of a range of alkenes with diazo esters to exhibit an exceptionally high degree of diastereoselectivity(~100% de) in favor of trans isomers, regardless the structure of the olefins and the diazo compounds. Comparative studies between 1 and 2 reveal that the former works better in terms of diastereocontrol. In contrast, however, enantioselectivity is low with both 1 and 2 as a whole although, in certain cases with a proper combination of the olefin and the diazo ester, high optical yields (up to 100% ee) can be achieved. Other reaction parameters such as the reaction temperature and the structure of the ligand do exhibit some influence, although infinitestimal, on both chemical and optical yields.

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes (경질알칸의 탈수소 반응을 위한 산소활용기술 연구 동향)

  • Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.128-134
    • /
    • 2016
  • Due to the great development made in converting the shale gas into the more valuable products, research and commercialization for production technology of olefins like propylene, butenes, butadiene from light alkanes have been intensively investigated. Especially the technology using oxygen like oxidative dehydrogenation or selective hydrogen combustion to overcome thermodynamic limit of direct dehydrogenation conversion has been extensively studied and some cases of applying this technology to the plant scale was reported. In this review, we have categorized the technology into two parts; gas phase oxygen utilization technology and lattice oxygen utilization technology. The trends, results and future direction of the technology are discussed.